CHAPTER SIXTEEN

Product Allocation

In a joint-ownership refinery, the participants can use their share of the refinery in any way they wish, provided it is not detrimental to the other participant or refinery as a whole. Therefore, at any given time, the participants will be using different proportions of their capacity entitlement on the crude and downstream units to produce a wide range of finished products, some of which are common to both participants and others produced for one participant only. Also, the inventory of intermediate or process stocks will change constantly.

At some stage, the ownership of various products and intermediate stocks has to be determined. In fact, the allocation of feedstocks and production is an exercise required under the processing agreement. This chapter describes how this is done. Product allocation for an operating period is routinely done at the end of the operating period. For example, if the operating period is a month, say January, product allocation will determine the ownership of products and process stocks at the end of January 31. Also, product allocation requires all operating data for the entire month, which would be available only after January 31. The actual ownership of products and process stocks in the refinery inventory on January 31, may be available only some weeks later, after the completion of the product allocation exercise for the month of January.

Product allocation is carried out in two distinct stages: preliminary allocation and final allocation. Essentially, the preliminary allocation consists of collecting data from all sources, feeding the data into an allocation program, making forecaster changes, and cross-checking the input data. Preliminary allocation allocates only the fixed-product grades and process stocks. Final allocation allocates the refinery production of balancing-grade products to the participants in the ratio of their allocation linear programs (LP) production of balancing grades. The following input data are required:

- 1. Each participant's definitive operating plan (DOP) for the month.
- 2. The participant's opening inventories of finished products and intermediate stocks. The previous month's preliminary and final allocation reports. The previous month closing inventories become the opening inventories for current month.
- 3. Each participant's product lifting, showing actual product shipped, local sales, pipeline transfers, etc. during the month.
- 4. Refinery closing inventories and consumption of finished products and intermediate stocks.
- 5. Actual crude throughput of the refinery for the month.
- 6. Product equivalencies for all fixed grades and process stocks.

FORECASTER CHANGES

The actual refinery production during the month of all fixed grades is compared with the production of the fixed grades in the combined or refinery DOP (Table 15-7). The differences between actual production and the DOP for fixed grades and process stocks are allocated to the participants as per a set of rules.

These differences, called *deltas*, between actual production and the combined DOP is allocated to the participants in such a way that the sum of two revised DOPs is made equal to actual production for all fixed grades and process stocks. This allocation of fixed-grade and process-stock deltas to the participants is called *forecaster assigned changes* or simply *forecaster changes*. Note that these changes are made only to fixed grades and process stocks and not to balancing grades. The objective is to revise the participants' DOPs in such a way as to bring all fixed-grade production in the combined DOP equal to the actual production.

RULES FOR FORECASTER CHANGES

First, the cause of difference between the actual refinery production and combined DOP is investigated and the delta allocated to the participants according to following rules.

Fixed Grades

1. For grades where only one participant requests production in its DOP. The delta is allocated to the participant with the DOP request as shown in following example. Consider a fixed grade I-390. Comparing the combined DOP for I-390 with its actual refinery production shows a delta of 7879 barrels. The entire delta is allocated to participant AOC, as BOC did not request production of this grade in its DOP:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	55300	7879
BOC	0	0
TOTAL	55300	7879
ACTUAL PRODUCTION	63179	
DELTA	7879	

2. For a grade where both participants request production in their DOP. Delta is allocated in the ratio of their DOP requests. However, if allocation by this rule causes negative closing inventory to a participant, the delta should be changed:

PARTICIPANT	DOP	DOP RATIO	DELTA	LIFTING	OPENING INVENTORY	CLOSING
AOC	69185	0.8279	20126	98000	5260	-3429
BOC	14384	0.1721	4184	0	3400	21968
TOTAL	83569	1.0000	24310		8660	18539
PRODUCTION	107879					
DELTA	24310					

In this case, splitting the delta in the DOP ratio has caused negative closing inventory due to overlifting by one participant. Here, AOC's delta is made equal to (lifting – opening inventory – DOP) to eliminate the negative closing inventory as follows:

PARTICIPANT	DOP	DELTA	LIFTING	OPENING INVENTORY	CLOSING INVENTORY
AOC	69185	23555	98000	5260	0
BOC	14384	755	0	3400	18539
TOTAL	83569	24310		8660	18539
PRODUCTION	107879				
DELTA	24310				

3. *No DOP request but there was an actual positive production.* In this case, the delta is allocated in the crude run ratio:

PARTICIPANT	DOP	CRUDE RATIO	DELTA
AOC	0	0.7112	3200
BOC	0	0.2888	1300
TOTAL	0	1.0000	4500
PRODUCTION	4500		
DELTA	4500		

4. No DOP request but there was an actual negative production due to reblending of a product grade. In this case, the delta is allocated to participants in the ratio of their opening inventories:

PARTICIPANT	DOP	OPENING INVENTORY	DELTA
AOC	0	8290	-990
BOC	0	4350	-520
TOTAL	0	12640	-1510
PRODUCTION	-1510		
DELTA	-1510		

Process and Intermediate Stocks

1. One participant requests a buildup and there actually is a buildup close to the request. In this case, the delta is allocated to the requesting participant as follows:

PARTICIPANT	DOP, bbl	DELTA, bbl	
AOC	25000	2230	
BOC	0	0	
TOTAL	25000	2230	
ACTUAL PRODUCTION	27230		
DELTA	2230		

2. One participant requests a buildup and there actually is a buildup but much larger than the request. In this case, the delta is allocated in the ratio of crude run of the participants:

PARTICIPANT	DOP, bbl	CRUDE RATIO	DELTA, bbl
AOC	19000	0.6250	14896
BOC	0	0.3750	8937
TOTAL	19000	1.0000	23833
ACTUAL PRODUCTION	42833		
DELTA	23833		

3. One participant requests a buildup and there actually is a buildup but much smaller than the request. In this case, the delta is allocated in the ratio of DOP of the participants:

PARTICIPANT	DOP, bbi	DELTA, bbl
AOC	40000	-30000
BOC	0	0
TOTAL	40000	-30000
ACTUAL PRODUCTION	10000	
DELTA	-30000	

4. One participant requests a buildup and there actually is a drawdown that is small. In this case, all drawdown (not delta) is allocated to the nonrequesting participant:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	25000	-25000
BOC	0	-1580
TOTAL	25000	-26580
ACTUAL PRODUCTION	-1580	
DELTA	-26580	

5. One participant requests a buildup, and there actually is a drawdown that is large. In this case, all the drawdown (not delta) is allocated in the ratio of the opening inventories of the participants:

PARTICIPANT	DOP, bbl	OPENING INV RATIO	DRAWDOWN, bbl	DELTA, bbl
AOC	20000	0.3342	-6528	-26528
BOC	0	0.6658	-13005	-13005
TOTAL	20000	1.0000	-19533	-39533
ACTUAL PRODUCTION	-19533			
DELTA	-39533			

6. Both participants request a buildup and there actually is a buildup. In this case, the delta is allocated in the ratio of DOP of the participants as follows:

PARTICIPANT	DOP, bbl	DOP RATIO	DELTA, bbl
AOC	21333	0.3983	-6033
BOC	32230	0.6017	-9114
TOTAL	53563	1.0000	-15147
ACTUAL PRODUCTION	38416		
DELTA	-15147		

7. Both participants request a buildup and there actually is a drawdown. In this case, the drawdown (not delta) is allocated in the ratio of opening inventories of the participants:

PARTICIPANT	DOP, bbl	OP. INV RATIO	DRAWDOWN, bbl	DELTA, bbl
AOC	20000	0.3341	-8353	-28353
BOC	41000	0.6659	-16647	-57647
TOTAL	61000	1.0000	-25000	-86000
ACTUAL PRODUCTION	-25000			
DELTA	-86000			

8. Only one participant requests a drawdown and there actually is a drawdown close to that request. In this case, the delta is allocated to the requesting participant as follows:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	0	0
BOC	-36000	-3610
TOTAL	-36000	-3610
ACTUAL PRODUCTION	-39610	
DELTA	-3610	

9. Only one participant requests a drawdown and there actually is a drawdown much larger than the request. In this case, the delta is allocated to participants in the ratio of opening inventories, as follows:

PARTICIPANT	DOP, bbl	OPENING INV RATIO	DELTA, bbl
AOC	0	0.4355	-12126
BOC	-19480	0.5645	-15717
TOTAL	-19480	1.0000	-27843
ACTUAL PRODUCTION	-47323		
DELTA	-27843		

10. Only one participant requests a drawdown and there actually is a drawdown much smaller than the request. In this case, the delta is allocated to participants in the ratio of DOPs, as follows:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	0	0
BOC	-20788	19212
TOTAL	-20788	19212
ACTUAL PRODUCTION	-1576	
DELTA	19212	

11. No DOP request but there actually is a drawdown. In this case, the delta is allocated to participants in the ratio of opening inventories, as follows:

PARTICIPANT	DOP, bbl	OPENING INV RATIO	DELTA, bbl
AOC	0	0.6814	-2418
BOC	0	0.3185	-1130
TOTAL	0	1.0000	-3548
ACTUAL PRODUCTION	-3548		
DELTA	-3548		

12. One participant requests a buildup, the other asks for a drawdown; there actually is a buildup that is small. In this case, protect the participant who asks for a drawdown:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	-20000	20000
BOC	15000	-10345
TOTAL	-5000	9655
ACTUAL PRODUCTION	4655	
DELTA	9655	

13. One participant requests a buildup, the other asks for a drawdown; there actually is a buildup that is large. In this case, protect the participant who asks for a drawdown (delta 1), then split the remaining delta (delta 2) in the ratio of crude run of the participants:

PARTICIPANT	DOP	CRUDE RATIO	DELTA 1, bbl	DELTA 2, bbl	TOTAL DELTA, bbl
AOC	-6500	0.3971	6500	10376	16876
BOC	9230	0.6029		15754	15754
TOTAL	2730	1.0000	6500	26130	32630
ACTUAL PRODUCTION	35360				
DELTA	32630				

528 Refining Processes Handbook

14. One participant requests a buildup, the other asks for a drawdown; there actually is a drawdown that is small. In this case, protect the participant who asks for a buildup, then allocate the remaining delta to the other participant:

PARTICIPANT	DOP, bbl	DELTA, bbl
AOC	-21740	18600
BOC	15000	-15000
TOTAL	-6740	3600
ACTUAL PRODUCTION	-3140	
DELTA	3600	

15. One participant requests a buildup, the other asks for a drawdown; there actualy is a drawdown that is large. In this case, protect the participant who asks for a buildup (delta 1), then split the remaining delta in the ratio of opening inventories:

		TOTAL			
PARTICIPANT	DOP, bbl	INV RATIO	DELTA 1, bbl	DELTA 2, bbl	DELTA, bbi
AOC	12681	0.3189	-12681	-7019	-19700
BOC	-6730	0.6811		-14992	-14992
TOTAL	5951	1.0000	-12681	-22011	-34692
ACTUAL PRODUCTION	-28741				
DELTA	-34692				

16. Only one participant requests a drawdown; there actually is a buildup that is small. In this case, allocate the buildup (not delta) to the nonrequesting participant:

PARTICIPANT	DOP, bbl	ALLOCATION, bbl	DELTA, bbl
AOC	0	1499	1499
BOC	-27471	0	27471
TOTAL	-27471	1499	28970
ACTUAL PRODUCTION	1499		
DELTA	28970		

17. Only one participant requests a drawdown; there actually is a buildup that is large. In this case, allocate the buildup (not delta) on a crude run ratio basis. Use this ratio to allocate the delta:

PARTICIPANT	DOP, bbl	CRUDE RATIO	ALLOCATION, bbl	DELTA, bbl
AOC	0	0.3972	10777	10777
BOC	-29491	0.6028	16356	45847
TOTAL	-29491	1.0000	27133	56624
ACTUAL PRODUCTION	27133			
DELTA	56624			

18. Both participants request a drawdown; there actually is a drawdown. In this case, allocate delta in the ratio of DOP:

PARTICIPANT	DOP,	DOP	DELTA,
	bbl	RATIO	bbl
AOC	-17320	0.4471	4578
BOC	-21417	0.5529	5662
TOTAL ACTUAL PRODUCTION DELTA	-38737 -28497 10240	1.0000	10240

19. Both participants request a drawdown; there actually is a buildup. In this case, allocate the buildup (not delta) in the ratio of crude run. Use this ratio to allocate the delta:

PARTICIPANT	DOP, bbl	CRUDE RATIO	ALLOCATION, bbl	DELTA, bbl
AOC	-17600	0.6032	12215	29815
BOC	-10100	0.3968	8035	18135
TOTAL	-27700	1.0000	20250	47950
ACTUAL PRODUCTION	20250			
DELTA	47950			

20. No DOP request but there actually is a buildup. In this case, the delta is allocated to participants in the ratio of their crude run ratio, as follows:

PARTICIPANT	DOP, bbl	CRUDE RUN RATIO	DELTA, bbl
AOC	0	0.6032	11530
BOC	0	0.3968	7585
TOTAL	0	1.0000	19115
ACTUAL PRODUCTION	19115		
DELTA	19115		

We see that the allocation of deltas between DOP requests and actual production involves considerable judgment. However, if a wrong decision is made, compensating changes to the balancing grade, which is equal in magnitude but opposite in sign, ensure that the participants' fixed grade is merely exchanged with equal barrels of balancing-grade products.

Allocation of Cat Reformate

Allocation of cat reformate, of different octane numbers, from the catalytic reformer unit is done using a different procedure. The actual cat reformer production during the month is split in the ratio of the DOP request of the participants. The reformate used by a participant in blending its gasoline cargoes is deducted from it. The remaining reformate is its allocation. A more-detailed procedure follows:

- 1. From the refinery records, for the reference month, determine the total reformer feed and the split for each mode of (severity) operation.
- 2. Split the estimated reformate production in the ratio of the DOPs.
- 3. Make an estimate of reformate usage of either severity in the blending of gasoline shipments during the month by each participant and use this ratio to split the actual reformate used in blending gasoline grades.
- 4. Deduct the reformate used from the reformate production of each participant to estimate its allocation.

The following example make the procedure clear.

During a given month, the cat reformer ran for 16 days at 8000 barrels per calendar day and processed 128,000 bpcd of feed. The split of the feed into different operation modes was as follows:

SEVERITY	FEED	REFORMATE YIELD	REFORMATE PRODUCTION
RON 90	48000	0.8200	39000
RON 95	80000	0.7700	62000
TOTAL	108000		101000

1. Split the estimated production of reformate, in the ratio of the DOP of the participants, as follows:

PARTICIPANT	DOP	DOP RATIO	90R REFORMATE	95R REFORMATE
AOC	65296	0.7167	27951	44435
BOC	25816	0.2833	11049	17565
TOTAL	91112	1.0000	39000	62000

2. Estimates of actual reformate usage in different shipments by both the participants are next prepared:

GRADE	AOC 90R, bbl	AOC 95R, bbl	BOC 90R, bbl	BOC 95R, bbl
I-393	0	2500	0	0
I-395	9400	4350	4600	2150
I-397	11500	500	0	0
I-397M	18000	36900	0	0
I-398	4000	0	0	0
TOTAL	42900	49250	4600	2150

3. Actual reformate usage in gasoline blending during the month from the refinery records, follows. This is split between the participants

532 Refining Processes Handbook

in the ratio of their actual usage. The reformate actually used in gasoline blending is

Reformate 90R = 54635 bbls Reformate 95R = 47298 bbls

 Split this actual refinery usage of reformate, in the ratio of participants' 90R and 95R usage in their shipments. Allocation is remaining production of a participant; that is (production – usage) as follows. For reformate 90R,

PARTICIPANT	RECORD,	SHIPMENT RATIO, bbl		REFORMER PRODUCTION, bbl	ALLOCATION, bbl
AOC	42900	0.9032	49344	27951	-21393
BOC	4600	0.0968	5291	11049	5758
TOTAL	47500	1.0000	54635	39000	-15635

For reformate 95R,

PARTICIPANT	SHIPMENT RECORD, bbl	SHIPMENT RATIO, bbl		REFORMER PRODUCTION, bbl	ALLOCATION, bbl
AOC	49250	0.9582	45320	44435	-885
BOC	2150	0.0418	1978	17565	15587
TOTAL	51400	1.0000	47298	62000	14702

FORECASTER COMPENSATING CHANGES

Every forecaster change results in an equal and opposite change to the balancing grades, depending on the product equivalency of that grade. Thus, any production of fixed grade by a participant over and above what was indicated in the participant's DOP has to come at the expense of balancing grade from a given crude run. Suppose forecaster change for I-1138 (bulk asphalt) for participant AOC is -9604 bbl and the equivalency for asphalt is as follows:

I-1138 = 1.0000

I-888 = -0.7287

I-961 = 1.7287

or one barrel of asphalt is equivalent to 1.7287 bbl I-961 (fuel oil) minus 0.7287 barrels of I-888 (diesel).

As such, -9604 bbl asphalt (I-1138) would be equivalent to

 $I-961 = 1.7287 \times (-9604)$ = -16602 bbl $I-888 = -0.7287 \times (-9604)$ = 6998 bbl

Thus, a fixed-grade I-1138 (asphalt) production decrease of 9604 barrels results in a balancing-grade fuel oil (I-961) production increase of 16,602 barrels and a balancing-grade diesel (I-888) production decrease of 6998 barrels. So, participant AOC is compensated for 9604 bbl asphalt loss with +16602 bbl I-961 (fuel oil) and -6998 bbl I-888 (diesel), as follows:

	FORECASTER	FOREC COMPEN CHANG	ISATING	TOTAL FORECASTER COMPENSATING
FIXED GRADE	CHANGE, bbl	I-961	1-888	CHANGE, bbl
I-1138	-9604	-6998	16602	9604

Compensating changes to the balancing grade are equal in magnitude but opposite in sign to forecaster change. The forecaster compensating changes are added algebraically to the balancing grade production of the participant.

CRUDE OIL CHANGES

The actual crude run during a month cannot be exactly the same as the participants' DOP estimates, even though the joint-operating company (JOC) tries to keep the crude run as close as possible to the participants' DOP.

Any delta between the actual crude run of a participant and its DOP rude run is reflected as forecaster change The crude oil delta is converted into balancing grade products by means of crude oil equivalency. The crude oil equivalency is the yields of balancing-grade products from the incremental crude run, generally determined by actual test runs on the refinery at various levels of crude throughput (Table 15-12).

EXAMPLE 16-3

The actual crude run of the refinery during a month was 125,526 barrels more than the combined DOP of the participants as follows:

CRUDE RUN	DOP, bbl	ACTUAL, bbl	DELTA, bbl
AOC	6,090,000	6,215,526	125,526
BOC	1,200,000	1,200,000	0
TOTAL REFINERY	7,290,000	7,415,526	125,526

Any change in the crude run is reflected in the production of balancing grades by means of crude oil equivalency. Here refinery crude run is 243 mbpcd therefore from table 15-12, crude oil equivalency for crude run 200–259 mbpcd is used.

Thus, additional processing of 125,526 bbl crude oil results in following balancing-grade production for participant AOC: I-201 = -126 bbl I-210 = 22,971 bbl I-440 = 12,553 bbl I-888 = 41,047 bbl I-961 = 46,947 bblLoss = 2,134 bbl

Total = 125,526 bbl

DOP "LOSS" ADJUSTMENT

During processing in the conversion units of the refinery (FCCU, hydrocracker, etc.) the stocks expand in volume due to reduction in density, resulting in volume gain or negative loss. A situation can arise in which the DOP of one participant shows volume gain (negative loss) while the other participant's DOP shows a positive loss. The allocation of actual refinery "losses" on the basis of retrospective DOPs becomes unrealistic, as the following example shows:

Retrospective DOP loss, AOC = -5,000 Retrospective DOP loss, BOC = 9,600 Total refinery retrospective losses = 4,600 Actual refinery losses = 30,000 Loss delta = 25,400

Splitting the loss delta in the ratio of retrospective DOP losses yields the following results:

AOC delta = -27,607 bbl BOC delta = 53,007 bbl Total retrospective delta = 25,400 bbl AOC allocated losses = -32,607 bbl BOC allocated losses = 62,607 bbl Total refinery losses = 30,000 bbl This allocation is unrealistic. Therefore, to make the losses positive in both retrospective DOPs, the balancing-grade production of each is reduced by 0.6 vol%. The actual refinery losses are next allocated in the ratio of the revised retrospective DOPs, after deducting 0.6% from balancing-grade production volumes.

The figure of 0.6%, which roughly represents unaccounted losses of the refinery during crude processing, is chosen to make the losses positive in both retrospective DOPs or, in other words, a little more than the volume gain encountered in the retrospective DOPs.

RETROSPECTIVE DOP

By applying forecaster changes, forecaster compensating changes, and crude changes, the original DOP of the participants has been amended to bring their fixed grades, process stock, and crude run equal to the actual production of fixed grades, process stocks, and crude. These amended DOPs of the participants are called *retrospective DOPs*, or *retro DOPs*, which are combined to make a refinery retro DOP.

Note that, in the refinery retro DOP,

- All fixed grade and process stock production equals their actual refinery production.
- The total crude run in the retro DOP equals the actual crude run.
- The delta between the actual production and retro DOP of the refinery remains on balancing grades.
- The delta between the actual production and retro DOP of the refinery remains on losses.

The retrospective DOP is used for the allocation of balancing grades and actual refinery losses.

ALLOCATION OF BALANCING GRADES

We see that, in the retrospective DOP, all deltas on fixed grades, intermediate stocks, and crude run have been eliminated. The deltas between actual production and retro DOP remain only in balancing grades and refinery loss (actual refinery losses minus retro DOP losses). In the allocation procedure, loss is treated as a balancing-grade product. The balancing-grade deltas (actual production minus retro production) are allocated by following procedure:

- 1. The retro DOP of the participants is expressed in balancing-grade equivalents using product equivalencies.
- 2. The total delta (actual production minus retro DOP) for each balancing grade and loss is determined. The sum of these deltas must equal zero.
- 3. Next, the deltas are allocated to participants in proportion to their respective shares of production of that product in the combined retro DOP (expressed in balancing grades).
- 4. By the nature of this calculation, the sum of each participant's delta allocation will not be balanced between the participants but equal in amount and of opposite plus and minus signs, since the sum of such imbalances must equal zero. Accordingly, a further step is required to eliminate these imbalances. This is done by reverse allocation, as described next.

REVERSE ALLOCATION

- 5. The absolute values of all balancing-grade (including loss) deltas are added to obtain the absolute value of combined total deltas (AVCTD).
- 6. The ratio of the absolute value of delta for each product and AVCTD is multiplied by the total imbalance (sum of delta allocations) to obtain the reverse allocation of that product for the other participant. The sum of such reverse allocation for each participant is equal to and of opposite sign to that participant's total imbalance (sum of delta allocations), accordingly eliminating the imbalance.
- 7. The total allocation of each participant is the sum of the retrospective DOP plus the sum of allocations for such product made under steps 3 and 4.

The preliminary product allocation is now complete.

EXAMPLE 16-4, PRELIMINARY ALLOCATION

Two participants, AOC and BOC, run a 250 mbpd oil refinery. Participant AOC has a 210 mbpd refinery capacity and participant BOC has

a 40 mbpd refinery capacity. The refinery is operated as a joint-ownership refinery as per their processing agreement (see the Appendix). The entire product allocation procedure for effecting their preliminary allocation is shown in Tables 16-1 to 16-8.

Table 16-1 shows the DOP of participants AOC and BOC for a given month. The combined production of two DOPs make up the refinery DOP. Tables 16-2 and 16-3 present procedure for adjusting the balancing grade for refinery losses, by participant. The total adjustment is 0.6% (LV) of the crude run. This is spread over the balancing grades in proportion to the participant's production, as shown in these tables.

Table 16-4 compares the actual refinery production of every fixed grade and process stock with that in the combined DOP. The delta between these is the total "forecaster" change. The total forecaster change is allocated to the participants as per the rules for allocation of fixed grades and process stocks explained earlier. Table 16-5 shows data for the actual refinery crude run and that, in the combined DOP, allocated to the participants as per the crude distillation unit capacity available to each.

Tables 16-6 and 16-7 show calculation of the forecaster compensating changes for each participant. The forecaster compensating changes for a fixed product grade or process stock are calculated by converting every forecaster change to its balancing-grades equivalent by means of a product equivalency and multiplying it by -1. The forecaster compensating change for crude is also calculated by converting to balancing-grades equivalent by means of a crude oil equivalency. However, unlike the fixed grades, the forecaster compensating changes for crude are of the same sign as the forecaster change for crude oil.

Table 16-8 shows the retrospective DOP of the participants (columns 6 and 11) and the overall refinery retrospective DOP (column 12). We see that

- 1. The fixed grade production in the participant's retrospective DOP is, in fact, its allocation. The sum of the participants' retrospective DOPs for any fixed grade or process stock equals the actual refinery production for that grade. Thus, in the retrospective DOP, the actual refinery production of all fixed grades and process stocks has been split or "allocated" to the participants.
- 2. The delta between the actual refinery production and the total retro DOP (column 12) remains only on balancing grades and losses.

PRODUCT	AOC	BOC	TOTAL
1138B	60000	46590	106590
1149B	0	0	0
150	17839	0	17839
201	0	864	864
210	946831	227578	1174409
220	0	0	0
383	0	0	0
390	76800	0	76800
395	0	0	0
397	512647	80716	593363
397E	0	0	0
398	44100	0	44100
411	0	0	0
419	420000	0	420000
434	240000	0	240000
440	517375	205589	722964
711	0	0	0
725	0	0	0
800	420000	0	420000
876	300000	0	300000
876ZP	240000	õ	240000
888	991519	409686	1401205
892	0	0	0
928	360000	Ő	360000
961	1074918	219295	1294213
PBFUEL	0	0	0
PCTTR	Ő	Ő	Ő
PDSDSL	õ	Ő	ů
PDSL	Õ	Ő	Ő
PFCOO	ů 0	Ő	Ő
PFDISO	ů	0 0	õ
PKERO	0	0	Ő
PLCGAS	-60000	0	-60000
PLLCN	-00000	0	-00000
PLTISO	0	0	0
PMEISO	0	0	0
PMIDSL	0	0	0
PMIDSL	0	0	0
PPOLY	-30000		-30000
PP90R	-18000	0 0	-18000
PP90R PP95R		0	
	-60000	-	-60000
PRESID	0	0	0
PSKERO	0	0	0
PSLOPD	0	0	0
PSLOPO	0	0	0
PSMCN	0	0	0
PSWMSR	0	0	0
PUFCHG	0	0	0
PWCN	0	0	0
PROD + STOCK	6054029	1190318	7244347
LOSSES	35971	9682	45653
CRUDE	6090000	1200000	7290000

Table 16-1Refinery DOP (All Figures in Barrels)

BALANCING GRADES	DOP, bbis	PERCENT	ADJUSTMENT, bbls	ADJUSTED DOP, bbis
I-150	18000	0.4	161	17839
I-201	0	0.0	0	0
I-210	955350	23.3	8519	946831
I-397	517260	12.6	4613	512647
I-440	522030	12.7	4655	517375
I-888	1000440	24.4	8921	991519
I-961	1084590	26.5	9672	1074918
	4097670	100.0	36541	4061129

Table 16-2 Adjustment of Losses, Participant AOC

NOTES:

TOTAL CRUDE RUN DURING THE MONTH = 6090000 bbls DEDUCT 0.6% FOR UNACCOUNTED LOSSES = 36540 bbls

Table 16-9 shows the retro DOP of the participants converted to balancing grade equivalents. This is used to allocate balancing grades and losses (loss is considered as balancing grade).

Table 16-10 shows the allocation of balancing grade deltas to participants as per procedure described earlier. Table 16-11 shows the complete preliminary product allocation, in which the actual refinery production of all fixed and balancing grades has been split (allocated) to the participants, AOC and BOC.

Table 16-3 Adjustment of Losses, Participant BOC						
BALANCING GRADE	DOP, bbis	PERCENT	ADJUSTMENT, bbls	ADJUSTED DOP, bbls		
I-150	0	0	0	0		
I-201	870	0.1	6	864		
I-210	229140	19.9	1562	227578		
I-397	81270	7.1	554	80716		
I-440	207000	18	1411	205589		
I-888	412500	35.7	2811	409689		
I-961	220800	19.2	1505	219295		
	1151580	100.0	7849	1143731		

NOTES:

CRUDE RUN FOR BOC = 1308000 bbl

DEDUCT 0.6% FOR UNACCOUNTED LOSSES = 7848 bbl

PRODUCTS	ACTUAL (PRODUCTION	COMBINED DOP	TOTAL FORCASTER CHANGE		FORECASTER CHANGE, BOC
GRADES					
1138 B	85638	106590	-20952	-9604	-11348
1149 B	25568	0	25568	13451	12117
150	19553	17839	BG		
201	0	864	BG		
210	1029704	1174409	BG		
220	575	0	575	0	575
383	17686	0	17686	17686	0
390	88039	76800	11239	11239	0
395	104597	0	104597	87671	16926
397	289195	593363	BG		
397E	3384	0	3384	0	3384
398	67508	44100	23408	23408	0
411	100	0	100	100	0
419	220278	420000	-199722	-199722	0
434	309908	240000	69908	69908	0
440	944758	722964	BG		
711	-28374	0	-28374	0	-28374
725	100752	0	100752	100752	0
800	378169	420000	-41831	-41831	0
876	-130601	300000	-430601	-430601	0
876ZP	232098	240000	-7902	-7902	0
888	2002599	1401205	BG		
892	-66	0	-66	-38	-28
928	403652	360000	43652	43652	0
961	1345430	1294213	BG		
PROCESS					
STOCKS					
PBFUEL	-1301	0	-1301	-657	-644
PCTTR	-8731	0	-8731	-7294	-1437
PDDSL	1470	0	1470	1232	238
PDSL	33564	0	33564	28133	5431
PFCOO	-25764	0	-25764	-17798	-7966
PFDISO	-196533	0	-196533	-188993	-7540
PKERO	-19637	0	-19637	-14004	-5633
PLCGAS	-18227	-60000	41773	41773	0
PLLCN	2674	0	2674	2241	433
PLTISO	10800	0	10800	9052	1748
PMEISO	35309	0	35309	29595	5714
PMIDSL	-26688	0	-26688	-20269	-6419
PMSR	19029	0	19029	15950	3079

Table 16-4Forecaster Changes for Fixed Grades and Process Stocks
(All Figures in Barrels)

		Table 1 Contin			
PPOLY	3652	-30000	33652	30000	3652
PP90R	1363	-18000	19363	18000	1363
PP95R	36857	-60000	96857	90893	5964
PRESID	793	0	793	665	128
PSKERO	13473	0	13473	11293	2180
PSLOPD	-4861	0	-4861	-4045	-816
PSLOPO	-4719	0	-4719	-3874	-845
PSMCN	9387	0	9387	7867	1520
PSWMSR	8909	0	8909	7467	1442
PUFCHG	-3099	0	-3099	-2590	-509
PWCN	-547	0	-547	451	-96
TOTAL	7377323	7244347	-292859	-287645	-5761
LOSSES	38204	45650			
CRUDE	7415526	7290000	125526	125526	0

NOTE: BG = BALANCING GRADE

FINAL ALLOCATION

In the preliminary allocation, the allocation of balancing grades is unsatisfactory because it is based on the participants' DOPs. A participant DOP is prepared from the refinery LP model using its share of processing unit capacity. The DOPs are prepared before the start of the reference month. At that time, the exact refinery unit capacity available for sharing between the participants, during the month, is not known. Also, the average balancing-grade product prices prevailing during the month, which are used to drive the LP, are not known. Participants may be using approximate data on processing unit capacity available to them and balancing-grade product prices in their refinery LP model. The result is that the optimization of balancing-grades production is not on the same basis in the two participants' LPs.

	С	Table 16-5Crude Changes (All Figures in Barrels)												
	ACTUAL CRUDE	COMBINED DOP	DELTA	FORECASTER, AOC	FORECASTER, BOC									
CRUDE RUN	7415526	729000	125526	125526	0									

Table 16-6 Forecaster Compensating Changes, AOC (All Figures in Barrels)

				FORE	ECASTER		ENSATIN	IG AOC		
GRADE	FORECASTER CHANGE	i-150	I-201	I-210	I-397	I-440	I-888	I-961	LOSS	CHECK
1138B	-9604	0	0	0	0	0	-6998	16602		9604
1149B	13451	0	0	0	0	0	9802	-23253		-13451
150										
201										
210										
220	0	0	0	0	0	0	0	0		0
383	17686	478	-14738	0	-3426	0	0	0		-17686
390	11239	76	-5106	0	-6210	0	0	0		-11239
395	87671	-1043	-16079	0	-70549	0	0	0		-87671
397										
397E	0	0	0	0	0	0	0	0		0
398	23408	7	-506	0	-22909	0	0	0		-23408
411	100	0	0	0	0	-100	0	0		-100
419	-199722	0	0	0	0	199722	0	0		199722
434	69908	2447	0	36562	0	-35793	0	0		-69908
440										
711	0	0	0	0	0	0	0	0		0
725	100752	Ő	Ő	Ő	Ő	Ő	-34941	-65811		-100752
800	-41831	Ő	0 0	0 0	Ő	-23764	65595	0		41831
876	-430601	Ő	0 0	0	Ő	63643	366958	ő		430601
876ZP	-7902	ő	Ő	Ő	0	4558	3344	0		7902
888	-1902	v	U	U	U	4550	5544	0		1902
892	-38	0	0	0	0	0	28	10		38
928	43652	ő	0	0	0	0	891	-44543		-43652
961	45052	v	v	v	v	v	071			
Process										
Stocks										
PBFUEL	-657	0	0	0	0	0	0	657		657
PCTTR	-7294	ŏ	Ő	ő	Ő	Ő	4696	2598		7294
PDDSL	1232	Ő	ŏ	ŏ	Ő	0	-1232	2570		-1232
PDSL	28133	0	0	0	0	0	-28133	0		-28133
PFCOO	-17798	0	0	0	0	0	4800	12998		17798
PFDISO	-188993	0	0	0	0	0	45472	143521		188993
PKERO	-14004	0	0	0	0	14004	43472	145521		14004
PLCGAS	41773	313	-1366	0	-40720	14004	0	0		-41773
PLLCAS	2241	17	-1366	0	-40720	0	0	0		-41773
PLECN	9052	0	-/3	0	-2185	0	-9052	0		-9052
PMEISO	29595	0	0	0	0	0	-9032 -9944	-19651		-29595
PMEISO	29595 -20269	0	0	0	0	-9224	-9944 29493	-19051		-29595 20269
								-		
PMSR	15950	1818 462	7481 3228	-25249 0	0 33690	0	0 0	0		-15950
PPOLY PP90R	30000	462		0		-		-		-30000
	18000		473	-		0	0	0		-18000
PP95R	90893	1872	14679	0	-107445	0	0	0		-90893
PRESID	665	0	0	0	0	0	-147	-518		-665
PSKERO	11293	0	0	0	0	-11293	0	0		-11293
PSLOPD	-4045	0	405	405	566	769	1497	405		4045
PSLOPO	-3874	0	387	387	542	736	1433	387		3874
PSMCN	7867	1370	-2851	0	-6386	0	0	0		-7867
PSWMSR	7467	851	3502	-11820	0	0	0	0		-7467
PUFCHG	-2590	-295	-1215	4100	0	0	0	0		2590
PWCN	-451	-79	163	0	366	0	0	0		451
TOTAL	287645	8704	-11615	-68739	-310927	203257	443561	23404		287645
CRUDE	125526	0	-1255	22595	0	12553	38913	50587	2134	125526

Table 16-7 Forecaster Compensating Changes, BOC (All Figures in Barrels)

	FORECASTER COMPENSATING CHANGES TO BALANCING GRADES FORECASTER												
GRADE	CHANGE	I-150	I-201	I-210	I-397	I-440	1-888	I-961	LOSS	CHECK			
1138B	-11348	0	0	0	0	0	-8269	19617		11348			
1149B	12117	0	0	0	0	0	8830	-20947		-12117			
150													
201													
210													
220	575	0	-575	0	0	0	0	0		-575			
383	0	0	0	0	0	0	0	0		0			
390	0	0	0	0	0	0	0	0		0			
395	16926	-201	-3104	0	-13620	0	0	0		-16926			
397													
397E	3384	0	0	0	-3384	0	0	0		-3384			
398	0	0	0	0	0	0	0	0		0			
411	0	0	0	0	0	0	0	0		0			
419	0	0	0	0	0	0	0	0		0			
434	0	0	0	0	0	0	0	0		0			
440													
711	-28374	0	0	0	0	0	7094	21281		28374			
725	0	0	0	0	0	0	0	0		0			
800	0	0	0	0	0	0	0	0		0			
876	0	0	0	0	0	0	0	0		0			
876ZP	0	0	0	0	0	0	0	0		0			
888	20	0	0	0	0	0	20			20			
892	-28	0	0	0	0	0	20	8		28			
928 961	0	0	0	0	0	0	0	0		0			
961 Process													
Stocks													
PBFUEL	-644	0	0	0	0	0	0	644		644			
PERUEL	-1437	0	0	0	0	0	925	512		1437			
PDDSL	238	0 0	0	0	0	0	-238	0		-238			
PDSL	5431	0	0	0	0	0	-5431	0		-5431			
PFCOO	-7966	0	0	0	0	0	2148	5818		7966			
PFDISO	-7540	0	0	0	Ő	0	1814	5726		7540			
PKERO	-5633	0	0	0	0	5633	0	0		5633			
PLCGAS	-5055	0	0	0	0	0	0	0		0			
PLLCN	433	3	14	Ő	-422	0	0	0		-433			
PLTISO	1748	õ	0	Ő	0	õ	-1748	ŏ		-1748			
PMEISO	5714	Ő	Ő	Õ	Ő	Ő	-1920	-3794		-5714			
PMIDSL	-6419	0	Ő	0	0	-2921	9340	0		6419			
PMSR	3079	351	1444	-4874	0	0	0	-0		-3079			
PPOLY	3652	56	393	0	-4101	0	0	0		-3652			
PP90R	1363	31	36	0	-1430	0	0	0		-1363			
PP95R	5964	123	963	0	-7050	0	0	0		-5964			
PRESID	128	0	0	0	0	0	-28	-100		-128			
PSKERO	2180	0	0	0	0	-2180	0	0		-2180			
PSLOPD	-816	0	82	82	114	155	302	82		816			
PSLOPO	-845	0	85	85	118	161	313	85		845			
PSMCN	1520	265	-551	0	-1234	0	0	0		-1520			
PSWMSR	1442	164	676	-2283	0	0	0	0		-1442			
PUFCHG	-509	-58	-239	806	0	0	0	0		509			
PWCN	-96	-17	35	0	78	0	0	0		96			
TOTAL	-5761	717	-770	-6185	-30931	847	13152	28930		5761			
CRUDE	0	0	0	0	0	0	0	0	0	0			

The final allocation is done after the end of the reference month. At that time, the monthly average unit capacity of each processing unit available to participants is known with certainty. Also, the monthly average balancing grade products published prices are known. Therefore, modeling the refinery unit capacities available to each participant can be accurate. Both models are driven by an average "Mean of Platt" or other published product price quotes prevailing during the month. Crude run, fixed grade productions, and process stocks drawdown or buildup are entered in the LP models from the preliminary allocation of the participants.

The final product allocation process has two main parts to it: running the allocation LPs, then rerunning the allocation procedure.

ALLOCATION LPs

Allocation LPs are the most important part of the allocation procedure. Two refinery LP models are prepared, modeling AOC's and BOC's shares of the refinery for the reference month. For example, if the joint refinery had available crude distillation capacity of 200,000 barrels per day and the equity of the two participants is 60% and 40%, then AOC will have 120,000 bpd and BOC will have 80,000 bpd crude distillation capacity. Capacity of the downstream units will be similarly split up. The unit capacities used in the LP models are the available unit capacities during the month (not the actually used capacities, which could be less than that available for certain units). All unit yields, stream properties, blending, and product specifications are accurately modeled as per actual refinery operations during the reference month.

PROCESS UNIT CAPACITIES

Data on the unit capacity available on each day of its operation during the month is maintained for every refinery unit and an average available unit capacity is determined at the end of the month (Table 16-12). These available capacities for every unit are split in the ratio of equity to model AOC's and BOC's shares of refinery capacity.

PRODUCT GRADE (1)	AOC DOP (2)	AOC FORECASTER (3)	AOC FC COMPENS. (4)	AOC CRUDE (5)	AOC RETRO DOP (6)	BOC DOP (7)	BOC FORE- CASTER (8)	BOC FC COMPENS (9)	BOC CRUDE (10)	BOC RETRO DOP (11)	TOTAL RETRO (12)	ACTUAL PROD- UCTION (13)	DELTA (14)
1138B	60000	9604			50396	46590	-11348			35242	85638	85638	0
1149B	0	13451			13451	0	12117			12117	25568	25568	0
150	17839		8704	0	26543	0		717	0	717	27260	19553	-7707
201	0		-11615	-1255	-12870	864		-770	0	94	-12776	0	12776
210	946831		68739	22595	900687	227578		-6185	0	221393	1122080	1029704	-92376
220	0	0			0	0	575			575	575	575	0
383	0	17686			17686	0	0			0	17686	17686	0
390	76800	11239			88039	0	0			0	88039	88039	0
395	0	87671			87671	0	16926			16926	104597	104597	0
397	512647		-310927	0	201720	80716		-30931	0	49785	251505	289195	37690
397E	0	0			0	0	3384			3384	3384	3384	0
398	44100	23408			67508	0	0			0	67508	67508	0
411	0	100			100	0	0			0	100	100	0
419	420000	199722			220278	0	0			0	220278	220278	0
434	240000	69908			309908	0	0			0	309908	309908	0
440	517375		203257	12553	733184	205589		847	0	206436	939621	944758	5137
711	0	0			0	0	-28374			-28374	28374	-28374	0
725	0	100752			100752	0	0			0	100752	100752	0
800	420000	-41831			378169	0	0			0	378169	378169	0
876	300000	-430601			-130601	0	0			0	-130601	-130601	0
876ZP	240000	-7902			232098	0	0			0	232098	232098	0
888	991519		443561	38913	1473993	409686		13152	0	422838	1896831	2002599	105768
892	0	38			-38	0	-28			-28	-66	66	0
928	360000	43652			403652	0	0			0	403652	403652	0
961	1074918		23404	50587	1148909	219295		28930	0	248225	1397134	1345430	~51704
PBFUEL	0	-657			-657	0	-644			-644	-1301	-1301	0

Table 16-8Retrospective DOP (All Figures in Barrels)

PRODUCT GRADE (1)	AOC DOP (2)	AOC FORECASTER (3)	AOC FC COMPENS. (4)	AOC CRUDE (5)	AOC RE IRO DOP (6)	BOC DOP (7)	BOC FORE- CASTER (8)	BOC FC COMPENS (9)	BOC CRUDE (10)	BOC RETRO DOP (11)	TOTAL RETRO (12)	ACTUAL PROD- UCTION (13)	DELTA (14)
PCTTR	0	7294			-7294	0	-1437			-1437	-8731	-8731	0
PDDSL	0	1232			1232	0	238			238	1470	1470	0
PDSL	0	28133			28133	0	5431			5431	33564	33564	0
PFCOO	0	-17798			-17798	0	-7966			7966	-25764	-25764	0
PFDISO	0	-188993			-188993	0	-7540			-7540	-196533	-196533	0
PKERO	0	14004			-14004	0	-5633			-5633	-19637	-19637	0
PLCGAS	-60000	41773			-18227	0	0			0	-18227	-18227	0
PLLCN	0	2241			2241	0	433			433	2674	2674	0
PLTISO	0	9052			9052	0	1748			1748	10800	10800	0
PMEISO	0	29595			29595	0	5714			5714	35309	35309	0
PMIDSL	0	-20269			-20269	0	-6419			-6419	-26688	26688	0
PMSR	0	15950			15950	0	3079			3079	19029	19029	0
PPOLY	-30000	30000			0	0	3652			3652	3652	3652	0
PP90R	-18000	18000			0	0	1363			1363	1363	1363	0
PP95R	-60000	90893			30893	0	5964			5964	36857	36857	0
PRESID	0	665			665	0	128			128	793	793	0
PSKERO	0	11293			11293	0	2180			2180	13473	13473	0
PSLOPD	0	-4045			-4045	0	-816			-816	-4861	-4861	0
PSLOPO	0	-3874			-3874	0	-845			-845	4719	-4719	0
PSMCN	0	7867			7867	0	1520			1520	9387	9387	0
PSWMSR	0	7467			7467	0	1442			1442	8909	8909	0
PUFCHG	0	-2590			2590	0	509			-509	-3099	-3099	0
PWCN	0	-451			-451	0	-96			96	547	-547	0
LOSSES	35971			2133.9	38104.94	9682				9682	47786.94	38204	-9582.9
CRUDE	6090000	125526			6215526	1200000	0			1200000	7415526	7415526	0
COL TOT	6054029	-287645	287645				-5761	5761	0				0

Table 16-8 Continued

NOTE: COLUMNS 4 AND 9 ARE FORECASTER COMPENSATING CHANGES TO BALANCING GRADES.

BALANCING	AO	C	BO	TOTAL,		
GRADES	%	bbl	%	bbl	bbl	
I-150	11460	100.00	0	0.00	11460	
I-201	46017	98.16	864	1.84	46881	
I-210	1094946	82.79	227578	17.21	1322524	
I-397	416254	83.76	80716	16.24	496970	
I-440	1016978	83.18	205589	16.82	1222567	
I-888	1995196	84.15	375736	15.85	2370932	
I-961	1596571	84.19	299835	15.81	1896406	
LOSS	38105	79.74	9682	20.26	47787	
TOTAL	6215526	83.82	1200000	16.18	7415526	

 Table 16-9

 Retrospective DOP in Terms of Balancing Grades

FEED AND PRODUCTS

- 1. Crude run in the LPs is per the participant's retrospective DOPs.
- 2. In the LP, the fixed grade products to be made are the allocated production for the fixed grades per the preliminary allocation. Negative production of any fixed grade is not entered into the LP and has to be taken care of by a forecaster change in the allocation program.
- 3. Negative allocation of process stock in the preliminary allocation is reflected as drawdown and positive allocation is reflected as a buildup in the LP models.
- 4. Allocation of slop (drawdown or buildup) is not modeled in the LPs. This is reflected as a forecaster change in the final allocation.

PRODUCT PRICES

The product prices driving the LPs are the agreed-on prices for balancing-grade products (Table 16-13). Normally, these are the average mean of Platts (MOP) published prices for the month in question. The location of the joint refinery dictates which market price quotes are to be used. Similarly, energy prices for refinery fuel and the like are based on MOP published data for the month. The LP models optimize the production of balancing-grade products based on balancing-grade prices in the two LPs.

Table 16-10	
Allocation of Balancing-Grade Deltas (All Figures in Barrels)	

								RST TEP	REVE ALLOC			I OF
PRODUCTS	TOTAL DELTA (1)	AOC, IN TERMS OF BG (2)	BOC, IN TERMS OF BG (3)	TOTAL (4)	% AOC (5)	% BOC (6)	AOC DELTA (7)	BOC DELTA (8)	AOC (9)	BOC (10)	AOC TOTAL DELTA (11)	BOC TOTAL DELTA (12)
I-150	-7707	11460	0	11460	1.0000	0.0000	-7707	0	-48	49	-7756	49
I-201	12776	46017	864	46881	0.9816	0.0184	12540	235	-80	80	12460	316
I-210	-92376	1094946	227578	1322524	0.8279	0.1721	-76480	-15896	581	581	-77061	-15315
I-397	37690	416254	80716	496970	0.8376	0.1624	31568	6121	-237	237	31331	6359
I-440	5137	1016978	205589	1222567	0.8318	0.1682	4273	864	-32	32	4241	896
I-888	105768	1995196	375736	2370932	0.8415	0.1585	89007	16762	-666	666	88341	17427
I-961	51704	1596571	299835	1896406	0.8419	0.1581	-43529	-8175	-325	325	-43855	-7849
LOSS	-9583	38105	9682	47787	0.7974	0.2026	-7641	-1942	-60	60	-7702	-1881
TOTAL	0						2031	-2031	-2031	2031	0	0

NOTES:

COLUMN 1 BALANCING-GRADE DELTAS BETWEEN ACTUAL PRODUCTION AND COMBINED RETROSPECTIVE DOP.

COLUMNS 2 AND 3 RETRO DOP OF AOC AND BOC EXPRESSED IN TERMS OF BALANCING GRADES.

COLUMNS 7 AND 8 TOTAL DELTA IN COLUMN 1 SPLIT IN THE RATIO OF RETRO DOP EXPRESSED IN TERMS OF BALANCING GRADES. AVCTD THE ABSOLUTE VALUES OF COMBINED TOTAL DELTAS IN COLUMN 1, =322,740.

COLUMNS 9 AND 10 REVERSE ALLOCATION OF DELTAS TO MAKE THE SUM OF AOC AND BOC DELTAS INDIVIDUALLY EQUAL TO ZERO. COLUMN 11 = COLUMN 7 + COLUMN 9.

Table 16-11 Preliminary Product Allocation (All Figures in Barrels)

PRODUCT	AOC RETRO	BOC RETRO	AOC BG DELTA	BOC BG DELTA	AOC ALLOCATION	BOC ALLOCATION	ACTUAL PRODUCTION
1138B	50396	35242			50396	35242	85638
1149B	13451	12117			13451	12117	25568
150	26543	717	-7756	49	18787	766	19553
201	-12870	94	12460	316	-410	410	0
210	900687	221393	-77061	-15315	823626	206079	1029704
220	0	575			0	575	575
383	17686	0			17686	0	17686
390	88039	Ő			88039	Ő	88039
395	87671	16926			87671	16926	104597
397	201720	49785	31331	6359	233051	56144	289195
397E	0	3384	51551	0557	0	3384	3384
398	67508	0			67508	0	67508
411	100	0			100	0	100
419	220278	0			220278	0	220278
434	309908	0			309908	0	309908
			40.41	804			
440	733184	206436	4241	896	737425	207333	944758
711	0	-28374			0	-28374	-28374
725	100752	0			100752	0	100752
800	378169	0			378169	0	378169
876	-130601	0			-130601	0	-130601
876ZP	232098	0			232098	0	232098
888	1473993	422838	88341	17427	1562334	440265	2002599
892	-38	-28			-38	-28	-66
928	403652	0			403652	0	403652
961	1148909	248225	-43855	-7849	1105054	240376	1345430
PBFUEL	-657	-644			657	-644	-1301
PCTTR	-7294	-1437			-7294	-1437	-8731
PDDSL	1232	238			1232	238	1470
PDSL	28133	5431			28133	5431	33564
PFCOO	-17798	-7966			-17798	-7966	-25764
PFDISO	-188993	-7540			-188993	-7540	196533
PKERO	14004	-5633			-14004	-5633	-19637
PLCGAS	-18227	0			-18227	0	-18227
PLLCN	2241	433			2241	433	2674
PLTISO	9052	1748			9052	1748	10800
PMEISO	29595	5714			29595	5714	35309
PMIDSL	-20269	-6419			-20269	-6419	-26688
PMSR	15950	3079			15950	3079	19029
PPOLY	0	3652			0	3652	3652
PP90R	0	1363			0	1363	1363
PP95R	30893	5964			30893	5964	36857
PRESID	665	128			665	128	793
PSKERO	11293	2180			11293	2180	13473
PSLOPD	-4045	-816			-4045	-816	-4861
PSLOPD	-4043	-845			-4043 -3874	-816 -845	-4719
PSLOPO	- 3874 7867	-845 1520			- 3874 7867	-845 1520	4719 9387
PSWMSR	7467	1442			7467	1442	8909
PUFCHG	-2590	-509			2590	-509	~-3099
PWCN	-451	-96		100.	451	-96	-547
LOSSES	38105	9682	-7702	-1881	30403	7801	38204
COL TOTAL					6215526	1200001	7415527
CRUDE	6215526	1200000			6215526	1200000	7415526

SUMMARY OF PRIMARY DATA INPUT FOR LPs

- 1. Balancing-grade product prices.
- 2. Available capacity of units during the month.
- 3. Actual crude run of each participant.
- 4. Fixed-grade product requirements as per preliminary allocation of that participant (negative allocations of fixed grades and slop allocation, positive or negative, are not put in the LPs).
- 5. Intermediate stocks drawdown and buildup as per the preliminary allocation data.

EXAMINATION OF LP RESULTS

The two LPs are run and the results examined for the following points:

- 1. The solution should be optimum and converged.
- 2. A data check should be conducted to ensure that the crude run, fixed grade, and process stock production are entered in the LP as per the preliminary allocation report.
- 3. The utilization of key units (crude distillation, FCCU, hydrocracker, and other conversion units) should be close to maximum or to the actual refinery performance during the month. If any key conversion unit is grossly under utilized, the cause should be investigated.
- 4. LP product blending should be examined to ensure there is no unnecessary giveaway and no dumping of distillate streams in fuel oils. For example,
 - If the FCCU is running full in one participant's LP but not in the other, adjustment would be made to the buildup or drawdown of process stock HVGO (FCCU feed) in an attempt to get the FCCU to run full in both LPs or at the same percentage of their capacity utilization.
 - If the price differential between naphtha and gasoline is such that the catalytic reformer is running at unrealistically high rates, then limit the unit to what it actually ran during the month.
 - From time to time, a situation arises where there is no production of a balancing grade, usually gasoline. If adjusting the inventory

Table 16-12Calculation of Available Processing UnitCapacities for Allocation LPS

PROCESS	NOMINAL			AVA	LABLE	PROCE	SSING	UNITS (CAPACI	TIES DU	JRING 1	HE MO	NTH, MI	BPSD		
	CAPACITY	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
1CDU	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
2CDU	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
3CDU	64	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69
4CDU	93	104	104	104	104	104	104	104	104	104	104	104	104	104	104	104
5CDU	46	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
TOTAL CDU	243	267	267	267	267	267	267	267	267	267	267	267	267	267	267	267
1VDU	9.6	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
5VDU	20	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
6VDU	52.63	67	67	67	50	50	50	50	50	67	67	67	67	67	67	67
TOTAL VDU	82.23	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1
DIESEL HDS	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
HYDROCRACKER	50	52	52	52	42	42	42	42	52	47	52	52	52	52	52	52
VISBREAKER	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
FCCU	39	45	45	45	45	45	0	0	0	0	0	0	45	45	45	45
CAT REFORMER	18	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
KERO TREATER	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
SULFUR PLANT	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165
H2 PLANT	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1

PROCESS	NOMINAL	AVAILABLE PROCESSING UNITS CAPACITIES DURING THE MONTH, MBPSD															
UNITS DAY	CAPACITY	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	AVERAGE
1CDU	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22.0
2CDU	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22.0
3CDU	64	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69.0
4CDU	93	104	104	104	104	104	104	104	104	104	104	104	0	0	0	0	90.1
5CDU	46	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50.0
TOTAL CDU	243	267	267	267	267	267	267	267	267	267	267	267	163	163	163	163	253.1
1VDU	9.6	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
5VDU	20	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33.0
6VDU	52.63	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	64.2
TOTAL VDU	82.23	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1	109.1
DIESEL HDS	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22.0
HYDROCRACKER	50	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	50.5
VISBREAKER	20	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22.0
FCCU	39	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	36.0
CAT REFORMER	18	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
KERO TREATER	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42.0
SULFUR PLANT	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.2
H2 PLANT	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1

NOTES:

SULFUR PLANT CAPACITY IN M TONS/DAY SULFUR.

H2 PLANT CAPACITY IN MMSCF H2/DAY.

ALL OTHER CAPACITIES IN M BPSD.

CAPACITIES USED IN ALLOCATION LPS ARE THE AVERAGE OF AVAILABLE UNIT CAPACITIES FOR THE MONTH.

changes of the blendstocks does not rectify the situation, then the balancing grade should be changed.

• The hydrogen balance listed in the LPs sometimes is not accurate. If a hydrogen consuming unit, such as a desulfurizer or hydrocracker, is constrained by the hydrogen supply, verify that the constraint is real or increase the hydrogen plant capacity by, say, 10% to allow conversion unit to run at full capacity.

Other points to look for are

- Are the specifications of all products correct?
- Which specifications are limiting? Are they reasonable? For example, if the flash point is the only limiting specs on diesel, there could be a problem elsewhere.
- For specifications that are not limiting, how much giveaway is there?
- Is the way the LP has chosen to run reasonable? Has it picked up an acceptable mode of operation of a particular unit?
- Are there any streams in the refinery fuel pool that should not be there?

These examples do not cover all the problems that could be encountered. It may be necessary to make additional LP runs until the programmer is satisfied with the results of both LPs for use in the allocation program.

INFEASIBILITIES

Sometimes, the LP cannot meet all the fixed grade product demand as per the preliminary allocation report and it returns an infeasible solution. In this case, the product or feedstock causing the infeasibility should be identified and its production in the DOP reduced to make the solution feasible. The delta between the actual production and the DOP for this product is entered as a forecaster change in the final allocation.

Gross underutilization of any conversion unit capacity can be handled similarly. For example, if an FCCU is grossly underutilized because of a buildup of VGO feed in the LP model, the VGO buildup could be appropriately reduced to allow fuller utilization of the FCCU and the rest of VGO buildup reflected as a forecaster change in the final allocation.

Table 16-13									
Calculation	of LP	Driving	Prices	(Example)					

DAY	AG LPG, \$/ton	AG NAPHTHA, \$/ton	AG KEROSENE, \$/bbl	AG DIESEL, \$/bbi	AG FUEL OIL, \$/Month	MED. NAPHTHA, \$/ton	MED. PREM., \$/ton GAS
1							
2	111.50	120.50	13.90	13.20	47.00	112.00	171.00
3	111.50	112.00	13.80	13.00	46.50	112.00	168.00
4	111.50	106.50	13.80	13.00	46.50	105.00	160.00
5	111.50	105.50	13.80	12.40	46.00	106.00	158.00
6	111.50	105.50	13.35	12.40	45.00	106.00	155.00
7							
8							
9	111.50	105.50	13.35	12.40	45.00	104.00	150.50
10	111.50	105.50	13.35	12.40	44.00	103.50	150.00
11	111.50	105.50	13.35	11.95	43.00	103.50	150.00
12	111.50	105.50	13.35	11.95	43.00	103.50	150.00
13	111.50	105.50	13.35	11.95	42.00	103.50	150.00
14							
15							
16	111.50	105.50	13.35	11.95	42.00	103.50	150.00
17	101.00	105.50	12.35	11.95	42.00	103.50	150.50
18	101.00	107.00	12.25	11.95	42.00	102.00	150.50
19	101.00	107.00	12.25	11.95	42.00	102.00	150.50
20	101.00	106.50	12.25	11.85	42.00	100.50	150.50
21							
22							
23	101.00	105.50	12.25	11.75	42.00	100.50	150.50
24	101.00	100.50	12.15	11.65	42.50	100.50	147.00
25	101.00	100.50	12.05	11.35	42.50	100.50	146.00
26	101.00	95.50	12.05	11.25	42.50	100.50	143.50
27	101.00	93.50	12.05	11.25	42.50	100.50	143.00
28							
29							
30	101.00	92.50	12.05	11.25	43.00	95.50	140.50
31							
MONTH AVERAGE	106.50	104.62	12.88	12.04	43.48	103.26	151.67

NOTES:

AG = ARABIAN GULF MARKET QUOTE (MEAN OF PLATT). MED = MEDITERRANEAN MARKET QUOTES (MEAN OF PLATT). GASOLINE AG MARKET PRICE IS EXTIMATED AS FOLLOWS, AS THERE ARE NO AG GASOLINE PRICES.

AVERAGE MEAN OF PLATT FOR MED PREM GASOLINE = 151.69 \$/Ton AVERAGE MEAN OF PLATT FOR MED NAPHTHA = 103.26 \$/Ton RATIO OF MED MOGAS /MED NAPHTHA = 1.4690 AVERAGE MEAN OF PLATT FOR AG GASOLINE = 103.36*; 1.4690 = 153.68 \$/Ton

FINAL ALLOCATION CYCLE

INITIAL DOP (FINAL ALLOCATION)

After the two allocation LPs are satisfactorily run, the LP productions of fixed grades and process stocks are entered as the initial DOP of the final allocation cycle (Tables 16-14 to 16-16). Balancing-grade production from the LP results are reduced by 0.6% to account for unaccounted losses, as was done in the case of preliminary allocation, before entering in the initial DOP.

FORECASTER CHANGES

Forecaster changes are next applied. There should be almost no forecaster change for most fixed grade and process stocks

All productions are entered in the LP in units of thousand barrels per day. Actual LP production in thousand barrels per day are reconverted into barrels per month before entering this data in the initial DOP of the final allocation. These conversions can cause small rounding errors between the preliminary allocation figures and those entered in the initial DOP of final allocation as shown next.

Consider for example the preliminary allocation of fixed grade I-390. The allocation for participant AOC is 88,039 bbls. This is entered in the AOC allocation LP as 88,039/(1000*30), or 2.934 thousand bbl/day.

In the initial DOP of the final allocation, this figure is again converted into barrels/month as 2.934*1000*30 or 88,020 bbl. To make it equal to the preliminary allocation figure of 88,039, a forecaster change of (88,039 - 88,020) or 19 bbl is introduced for AOC.

Similarly, any rounding error on the crude run is entered in units of thousand barrels/day in the LPs is corrected as a forecaster change, to make it equal to actual crude run of the participant as per preliminary allocation.

For all fixed grades and process stocks that were not modeled in the LPs, the initial DOP (final allocation) would be zero and forecaster changes should be the same as in the preliminary allocation.

A situation can arise in which the allocated production of a process stock in the preliminary allocation, when reflected in the participants' LP, causes serious underutilization of a key conversion unit, such as the hydrocracker or FCCU. In this case, the LP production values are sufficiently reduced and the remaining allocated production reflected as forecaster changes, as shown by following example.

EXAMPLE 16-5

The allocated production of a feedstock PFDISO (HVGO feed to hydrocracker) in the preliminary allocation is as follows:

AOC PFDISO = 39,816 bbl BOC PFDISO = 7839 bbl Refinery buildup = 47,655 bbl

As this buildup of 39,816 and 7839 bbl in the participants' allocation LPs causes underutilization of the hydrocracker unit (due to lack of feed), the buildup is reduced as follows:

	BUILDUP, bbl	DELTA, bbl			
AOC	17,010	22,806			
BOC	1,830	6,009			
TOTAL	18,840	28,815			

The remaining deltas are applied as forecaster change in the final allocation.

RETROSPECTIVE DOP (FINAL ALLOCATION)

By applying forecaster changes, forecaster compensating changes, and crude changes, the initial DOP based on allocation LP production is amended to bring fixed grades, process stock and crude run equal to the actual production of the participants. These amended participant DOPs are called *retrospective DOPs* or *retro DOPs*. These two retro DOPs of the participants are combined to make a refinery retro DOP. The procedure is identical to that followed for the retro DOP in the preliminary allocation. The retrospective DOP is used for the allocation of balancing grades and actual refinery losses.

PRODUCT	AOC	BOC	TOTAL		
1138B	50396	35242	85638		
1149B	13451	12117	25568		
150	19067	0	19067		
201	204504	50906	255410		
210	622971	151556	774527		
220	0	570	570		
383	17700	0	17700		
390	88050	0	88050		
395	87660	16920	104580		
397	215748	58918	274666		
397E	0	3390	3390		
398	67500	0	67500		
411	90	0	90		
419	220290	0	220290		
434	310170	0	310170		
440	376971	144019	520990		
711	0	-28380	-28380		
725	100740	0	100740		
800	378180	0	378180		
876	0	0	(
876ZP	232110	0	232110		
888	1943011	450586	2393597		
892	0	0	(
928	403650	0	403650		
961	985664	242584	1228248		
PBFUEL	0	0	(
PCTTR	-7290	-1440	-8730		
PDSDSL	0	1470	1470		
PDSL	0	33570	33570		
PFCOO	-17790	7980	-25770		
PFDISO	-189000	-7530	-196530		
PKERO	-19637	0	-19637		
PLCGAS	-18227	0	-18227		
PLLCN	2237	420	2657		
PLTISO	10800	0	10800		
PMEISO	29610	5700	35310		
PMIDSL	-20280	-6420	-26700		
PMSR	15950	3079	19029		
PPOLY	0	3660	3660		
PP90R	õ	1350	1350		
PP95R	30900	5970	36870		
PRESID	660	120	780		
PSKERO	-13	13470	13453		
PSLOPD	0	0	13 (3		
PSLOPO	0	0	(
PSHOPO	7860	1530	9390		
PSWMSR	7800	1442	8909		
PUFCHG	-3107	9	-3098		
PUFCHG PWCN	-3107	9	-3098		
PWCN PROD + STOCK	6168063	1186848	7354911		
LOSSES	47457	1180848	60609		
CRUDE	6215520	1200000	7415520		

Table 16-14 Refinery DOP (bbl)

NOTE:

THE TWO LP PRODUCTIONS ARE COMBINED TO GIVE AN INITIAL DOP. THE BALANCING GRADE PRODUCTION HAS BEEN ADJUSTED FOR UNACCOUNTED LOSSES.

BALANCING GRADE	DOP, bbi PERCEN		ADJUSTMENT, bbl	ADJUSTED PRODUCTION, bbl		
I-150	19230	0.44	163	19067		
I-201	206250	4.68	1746	204504		
I-210	628290	14.26	5319	622971		
I-397	217590	4.94	1842	215748		
I-440	380190	8.63	3219	376971		
I-888	1959600	44.48	16589	1943011		
I-961	994080	22.57	8416	985664		
	4405230	100.00	37293	4367937		

Table 16-15 Adjustment of Losses, Participant AOC

NOTES:

CRUDE RUN FOR AOC IN THE LP MODEL = 6215520 bbl DEDUCT 0.6% FOR UNACCOUNTED LOSSES = 37293 bbl

BALANCING GRADE	,		ADJUSTMENT, bbl	ADJUSTED PRODUCTION, bb		
I-150	0	0.00	0	0		
I-201	51270	4.63	364	50906		
I-210	152640	13.80	1084	151556		
I-397	59340	5.36	422	58918		
I-440	145050	13.11	1031	144019		
I-888	453810	41.02	3224	450586		
I-961	244320	22.08	1736	242584		
	1106430	100.00	7861	1098569		

Table 16-16 Adjustment of Losses, Participant BOC

NOTES:

CRUDE RUN FOR BOC IN THE LP MODEL = 1310160 bbl DEDUCT 0.6% FOR UNACCOUNTED LOSSES = 7861 bbl

ALLOCATION OF BALANCING GRADES (FINAL ALLOCATION)

In the retrospective DOP, all deltas on fixed grades, process stocks, and crude run have been eliminated. Deltas between the actual production and retro DOP remain only in balancing grades and refinery loss (actual refinery losses minus retro DOP losses). The procedure for allocating the balancing grades in the final allocation is identical to that followed for preliminary allocation. The allocation of fixed grades and process stocks also remain unchanged from that in the preliminary allocation. Only the balancing-grade allocations have changed from the preliminary allocation.

EXAMPLE 16-6 (FINAL ALLOCATION)

Continuing from Example 16-4, the entire final product allocation procedure is shown in Tables 16-12 to 16-24.

It may be recalled that the allocated productions of fixed grades and process stocks from the preliminary product allocation was input in the respective LP models of the participants. The participants' allocation LPs are run, and the LP production of all grades for both participants is entered as the initial DOP for the final allocation. The crude run of the participants is fixed as per the preliminary allocation. The allocation LPs are used to optimize the production of balancing grades for a given fixed grades/process stock slate.

Table 16-14 shows participants' AOC and BOC initial DOP for final allocation. The combined production of the two DOPs make a refinery DOP. Tables 16-15 and 16-16 show the adjustment of balancing grades for unaccounted refinery losses. The adjustment is 0.6% (LV) of the crude run of the participant. These are spread over the balancing grades in proportion to their production as shown in these tables.

Table 16-17 compares the actual refinery production of every fixed grade and process stock with that in the combined refinery DOP. The delta between these is the total "forecaster" change. There should be no forecaster change for fixed grades, process stocks, and crude run for all those grades whose allocated production as per preliminary allocation is reflected in the allocation LPs (except for small rounding error, as explained earlier). For all those grades that were not reflected in the allocation LPs, such as fixed grades with negative production or process stocks such as slop, the forecaster change is exactly as per the preliminary allocation.

Table 16-18 shows data for actual refinery crude run and that in the combined DOP. The small forecaster change is due to rounding error generated by converting LP figures in thousand barrels per day to barrels in the initial DOP of the participants.

Tables 16-19 and 16-20 show the calculation of forecaster compensating changes for the participants. The procedure is identical to that followed in the preliminary allocation.

Table 16-21 shows the retrospective DOP of the participants (columns 6 and 11) and the overall refinery retrospective DOP (column 12). We see that

- 1. Fixed grade production in each participant's retrospective DOP is, in fact, its allocation. The sum of the participants' retrospective DOPs for any fixed grade or process stock equals the actual refinery production for that grade.
- 2. The delta between the actual refinery production and the total retro DOP (column 12) remains only on balancing grades and losses.

Table 16-22 shows the retro DOP of the participants converted to balancing-grade equivalents. This is used for allocation of balancing grades and losses (loss is considered as balancing grade). Table 16-23 shows allocation of balancing grade deltas to participants, as per the procedure described earlier.

Table 16-24 shows the complete final product allocation, in which the actual refinery production of all fixed and balancing grades is split, or "allocated," to participants AOC and BOC.

ALLOCATION SPREADSHEET PROGRAM

The product allocation procedures can be aided by a spreadsheet program. The program is used for both the preliminary and final allocations. An example in the use of the allocation program follows.

PRELIMINARY ALLOCATION

Data are entered only in the shaded cells shown in the screens.

- 1. The participants' submitted DOPs, including crude run, is entered on Screen 1 of the program. The participants' DOP balancing-grade production must be reduced by 0.6% of their crude run to account for unaccounted losses.
- The participants' opening inventories of all product grades, process stocks, product lifting, and local sales are entered on Screens 2 and
 The source of opening inventory data is the previous month's

562 Refining Processes Handbook

final allocation report. The previous month closing inventories become the opening inventories of the current month.

3. The refinery's physical closing inventory of all products, process stocks, and consumption are entered on Screen 4. The source of the data is refinery stock report. The program calculates the production of a product from the following relationship:

Production = closing inventory – opening inventory + product lifted + local sales + refinery consumption

where the refinery's opening inventory, product lifted, and local sales is the sum of the participants' opening inventories, product lifted, and local sales data entered in Screen 2 and 3.

- 4. The total forecaster change for any fixed grade is computed by the program as the delta between the total refinery production and the sum of participants' DOPs.
- 5. The total forecaster change for a fixed grade or process stock is split between the participants as per the rules of allocation of fixed grades and process stocks and entered on Screen 1.
- 6. The refinery actual (total) crude run during the month is entered on Screen 1.
- 7. Product equivalencies of all fixed grades, process stocks, and crude are entered on Screen 5. Unless a new grade is introduced or a balancing grade is changed, no data need be entered on this screen.

The program calculates the following:

- 1. The retrospective DOP of the two participants (Screen 6).
- 2. The retrospective DOP of the overall refinery by combining the participants' DOPs and the retro DOP expressed in terms of balancing grades (Screens 7 and 8).
- 3. The delta on the balancing grades between actual refinery production and the combined DOP production of the participants is split between the participants, and allocation of balancing-grade products is done by the program and presented on Screen 9.

Table 16-17 Forecaster Changes for Fixed Grades and Process Stocks (bbl)

PRODUCT	ACTUAL PRODUCTION	REFINERY DOP*	TOTAL FORCASTER CHANGE	FORECASTER AOC	FORECASTER BOC	
1138B	85638	85638	0	0	0	
1149B	25568	25568	0	0	0	
150	19553	0	BG			
201	0	50906	BG			
210	1029704	151556	BG			
220	575	570	5	0	5	
383	17686	0	17686	-14	17700	
390	88039	0	88039	-11	88050	
395	104597	16920	87677	11	87666	
397	289195	58918	BG			
397E	3384	3390	-6	0	-6	
398	67508	0	67508	8	67500	
411	100	0	100	10	90	
419	220278	0	220278	0	220278	
434	309908	0	309908	-262	310170	
440	944758	144019	BG			
711	-28374	-28380	6	0	6	
725	100752	0	100752	12	100740	
800	378169	0	378169	-11	378180	
876	-130601	0	-130601	-130601	0	
876ZP	232098	0	232098	-12	232110	
888	2002599	450586	BG			
892	-66	0	-66	-38	-28	
928	403652	0	403652	2	403650	
961	1345430	242584	BG			
Process						
Stocks						
PBFUEL	-1301	0	-1301	-657	-644	
PCTTR	-8731	-1440	-7291	-4	-7287	
PDDSL	1470	1470	0	0	0	
PDSL	33564	33570	-6	0	-6	
PFCOO	-25764	-7980	-17784	5	-17789	
PFDISO	-196533	-7530	-189003	7	-189010	
PKERO	-19637	0	-19637	0	-19637	
PLCGAS	-18227	0	-18227	0	-18227	
PLLCN	2674	420	2254	4	2250	
PLTISO	10800	0	10800	0	10800	
PMEISO	35309	5700	29609	-15	29624	
PMIDSL	-26688	-6420	-20268	11	-20279	
PMSR	19029	3079	15950	0	15950	
PPOLY	3652	3660	8	0	-8	
PP90R	1363	1350	13	0	13	

Continued									
PRODUCT	ACTUAL PRODUCTION	REFINERY DOP*	TOTAL FORCASTER CHANGE	FORECASTER AOC	FORECASTER BOC				
PP95R	36857	5970	30887	-7	30894				
PRESID	793	120	673	5	668				
PSKERO	13473	13470	3	13	-10				
PSLOPD	-4861	0	-4861	-4045	-816				
PSLOPO	-4719	0	-4719	-3874	-845				
PSMCN	9387	1530	7857	-3	7860				
PSWMSR	8909	1442	7467	0	7467				
PUFCHG	-3099	9	-3108	8	-3116				
PWCN	-547	0	-547	-451	-96				
TOTAL	7377323	1250695	1593958	-139909	1733867				
LOSSES	38204	6164825							
CRUDE	7415526	7415520	6	6	0				

Table 16-17

* SUM OF ALLOCATION LPS.

- 4. A summary of the allocation of all product grades and process stocks is determined by the program and presented on Screen 10.
- 5. The allocated production of the participants is transmitted to Screens 2 and 3, and the program calculates the closing inventories of the participants.

FINAL ALLOCATION

In the final allocation cycle, the following data remain unchanged from the preliminary allocation: the allocation of fixed grades and process

Cru			
	DOP CRUDE	ACTUAL CRUDE	DELTA
AOC	6215520	6215526	6
BOC	1200000	1200000	0
TOTAL REFINERY	7415520	7415526	6

Table 16-19 Forecaster Compensating Changes, AOC (bbl)

	FORECASTER COMPENSATING CHANGES TO BALANCING GRADES									
PRODUCT	FORECASTER CHANGE	l-150	I-201	I-210	1-397	I-440	I-888	I-961	LOSS	СНЕСК
1138B	0	0	0	0	0	0	0	0		0
1149B	0	0	0	0	0	0	0	0		0
150	BG									
201	BG									
210	BG									
220	0	0	0	0	0	0	0	0		0
383	-14	ŏ	12	ŏ	3	Ő	0 0	ŏ		14
390	-11	ŏ	5	ŏ	6	0 0	0	Ő		11
395	-11	ŏ	-2	0	-9	Ő	0	0 0		-11
395 397	BG	0	-2	0	-,	0	U	0		-11
397 397E	0	0	0	0	0	0	0	0		0
		0						-		0
398	8	0	0	0	-8	0	0	0		-8
411	10	0	0	0	0	-10	0	0		-10
419	0	0	0	0	0	0	0	0		0
434	-262	-9	0	137	0	134	0	0		262
440	BG									
711	0	0	0	0	0	0	0	0		0
725	12	0	0	0	0	0	-4	-8		-12
800	-11	0	0	0	0	-6	17	0		11
876	-130601	0	0	0	0	19303	111298	0		130601
876ZP	-12	0	0	0	0	7	5	0		12
888	BG	-	÷	-	Ť			-		
892	-38	0	0	0	0	0	28	10		38
928	2	ŏ	ŏ	ŏ	ŏ	Ő	20	-2		-2
961	BG	U	v	v	v	v	v	-2		-2
Process	60									
Stocks										
PBFUEL	-657	0	0	0	0	0	0	657		657
PCTTR	-4	0	0	0	0	0	3	1		4
PDDSL	0	0	0	0	0	0	0	0		0
PDSL	0	0	0	0	0	0	0	0		0
PFCOO	5	0	0	0	0	0	-1	-4		-5
PFDISO	7	0	0	0	0	0	-2	-5		-7
PKERO	0	0	0	0	0	0	0	0		0
PLCGAS	0	0	0	0	0	0	0	0		0
PLLCN	4	0	0	0	-4	0	0	0		-4
PLTISO	0	0	0	0	0	0	0	0		0
PMEISO	15	0	0	0	0	0	5	10		15
PMIDSL	11	õ	Ő	0	Ő	5	-16	0		-11
PMSR	0	Ő	Ő	Ő	ů 0	0	0	Ő		0
PPOLY	Ő	ŏ	ŏ	ő	ő	ő	Ő	ő		0 0
PP90R	0	ő	ő	0	ő	ő	0	0		0
PP90R PP95R	-7	-	-	0		-		0		7
		0	-1		8	0	0			
PRESID	5	0	0	0	0	0	-1	-4		-5
PSKERO	13	0	0	0	0	-13	0	0		-13
PSLOPD	4045	0	405	405	566	769	1497	405		4045
PSLOPO	-3874	0	387	387	542	736	1433	387		3874
PSMCN	-3	-1	1	0	2	0	0	0		3
PSWMSR	0	0	0	0	0	0	0	0		0
PUFCHG	8	1	4	-13	0	0	0	0		-8
PWCN	-451	-79	163	0	366	0	0	0		451
TOTAL	-139909	-88	973	916	1474	20924	114262	1448		139909
		00				207-1				

	FORECASTER	FORECASTER COMPENSATING CHANGES TO BALANCING GRADES								
PRODUCT	CHANGE	I-150	I-201	I-210	I-397	I-440	1-888	I-961	LOSS	CHECK
1138B	0	0	0	0	0	0	0	0		0
1149B	0	0	0	0	0	0	0	0		0
150										
201										
210										
220	5	0	-5	0	0	0	0	0		-5
383	0	0	0	0	0	0	0	0		0
390	0	0	0	0	0	0	0	0		0
395	6	0	-1	0	-5	0	0	0		-6
397										
397E	-6	0	0	0	6	0	0	0		6
398	0	0	0	0	0	0	0	0		0
411	0	0	0	0	0	0	0	0		0
419	-12	0	0	0	0	12	0	0		12
434	0	0	0	0	0	0	0	0		0
440										
711	6	0	0	0	0	0	$^{-2}$	-5		-6
725	0	0	0	0	0	0	0	0		0
800	0	0	0	0	0	0	0	0		0
876	0	0	0	0	0	0	0	0		0
876ZP	0	0	0	0	0	0	0	0		0
888										
892	-28	0	0	0	0	0	20	8		28
928	0	0	0	0	0	0	0	0		0
961										
PROCESS										
STOCKS										
PBFUEL	-644	0	0	0	0	0	0	644		644
PCTTR	3	0	0	0	0	0	-2	1		-3
PDDSL	0	0	0	0	0	0	0	0		0
PDSL	-6	0	0	0	0	0	6	0		6
PFCOO	1	0	0	0	0	0	0	-1		-1
PFDISO	-10	0	0	0	0	0	2	8		10
PKERO	0	0	0	0	0	0	0	0		0
PLCGAS	0	0	0	0	0	0	0	0		0
PLLCN	13	0	0	0	-13	0	0	0		-13
PLTISO	0	0	0	0	0	0	0	0		0
PMEISO	14	0	0	0	0	0	-5	9		14
PMIDSL	1	0	0	0	0	0	$^{-1}$	0		-1
PMSR	0	0	0	0	0	0	0	0		0
PPOLY	-8	0	-1	0	9	0	0	0		8
PP90R	13	0	0	0	-14	0	0	0		-13
PP95R	6	0	-1	0	7	0	0	0		6
PRESID	8	0	0	0	0	0	-2	6		-8
PSKERO	3	0	0	0	0	-3	0	0		-3
PSLOPD	-816	Ō	82	82	114	155	302	82		816
PSLOPO	-845	Ő	85	85	118	161	313	85		845
PSMCN	0	Ő	0	0	0	0	0	0		0
PSWMSR	0	Ő	ő	0 0	Ő	Ő	ő	Ő		0
PUFCHG	-9	-1	-4	14	0 0	0	ő	0		9
PWCN	-96	-17	35	0	78	ŏ	Ő	0		96
TOTAL	-2413		189	180	301	325	632	803		2413
CRUDE	-2413		0	100	0	323 0	032	0	0	2413
	v		<u> </u>				V	U		· · ·

Table 16-20Forecaster Compensating Changes, BOC (bbl)

stock and all data on opening inventories, refinery closing inventory, product lifted, local sales, and refinery consumption (Screens 2 to 4) remain unchanged.

The preliminary allocation file is saved under a different name and the initial DOP of the participants in Screen 1 is updated. Instead of the participants' submitted DOPs, the production from the allocation LPs of the participants are entered on Screen 1, subject to following exceptions:

- Only positive production of fixed grades as per allocation LPs and process stock buildup or drawdown as reflected in the LPs are entered.
- Actual crude run of the participants as per the allocation LPs is entered in Screen 1.
- Ideally there should be no forecaster changes for all fixed grades and process stocks reflected in the allocation LPs, except for small rounding errors due to conversion of LP figures in thousand barrels per day to DOP figures in barrels per month. The rounding error is the difference between the allocated production as per preliminary allocation of that grade and the DOP figure of the participant entered on Screen 1.
- If process stocks are not modeled in the LPs, the forecaster change for the product or stock is identical to that in the preliminary allocation.
- If any process stock production, positive or negative, cannot be fully reflected in the allocation LP (due to an LP convergence problem or underutilization of a key conversion unit), the difference between the allocated production of the grade and the initial DOP of the participant (Screen 1) is reflected as forecaster change for that participant.

The program calculates the rest of the data, such as allocation of balancing grades, in a manner similar to that for the preliminary allocation.

We see that, in the final allocation, only the allocation of balancing grades and refinery losses change from the preliminary allocation. The rest of the report is identical to the preliminary allocation report.

PRODUCT ALLOCATION PROBLEMS

DUMPING OF KEROSENE INTO DIESEL

Due to constraints on the storage capacity or available ullage to sustain the refinery production rate of middle distillates, the refinery is some-