CHAPTER FIFTEEN

Definitive Operating Plan

Before the start of an operating period, usually a month, the planner submits an operating plan, termed the *definitive operating plan* (DOP), to the refinery Operations Department, defining how the refinery is to be run during the month.

The DOP for a given month contains information on the following:

- 1. The crude oils to be processed during the month and their quantities.
- 2. Product grades and the quantities to be produced during the month.
- 3. Intermediate stocks to be drawn from the inventory to make the refinery's product slate.
- 4. Inventory of intermediate stocks to be built up during the month.
- 5. Process unit capacities available, based on the refinery's latest shutdown schedule and estimated process unit capacities utilized to make the product slate.
- 6. Composition of feed to all conversion units.
- 7. Product prices of the balancing-grade products and energy price used to optimize product blending.
- 8. Blending instructions for critical stocks, where alternate blending is possible.
- 9. Additives to be used for blending products and their estimated consumption. Only additives used for product blending (for example, dyes for gasoline, antistatic and anti-icing additives for jet fuels, pour point depressants for diesels) must be listed.
- 10. Expected production rate for all product groups during the month.

The DOP is prepared using a refinery linear programming model. Refinery material balance spreadsheet programs can also be used, but LP models are preferred as no product blending optimization is possible with spreadsheet programs. The first step in preparing the DOP for a given month is to update the refinery LP model by incorporating the following:

- *Refinery crude run.* The crude processing rate is estimated from the total crude to be run during the month.
- Available processing units' capacity. Every refinery processing unit has an agreed-on minimum and maximum nominal capacity in mb (thousand barrels) per stream day. The data are based on previous test runs on the unit. Also, the refinery maintains a unit shutdown schedule for the next 12 or more months to perform routine maintenance, major repairs, catalyst change or regeneration, and the like. This document is constantly updated. Thus, from the latest shutdown schedule, it is possible to find out as to how many days during the month a given unit would be available to process feedstock. From such data, two on-stream factors (OSF) are worked out:

OSF1 = (number of days unit is likely to be available)/ (total number of days in the month)

Here, OSF is the on-stream factor for scheduled maintenance. To take into account unit unavailability due to possible unscheduled shutdowns, another factor (OSF2) is used. This is based on the past experience in operating the unit.

Available (max) unit capacity = nominal max capacity \times OSF1 \times OSF2

For example, if the nominal throughput of a unit is 50 mbpd, OSF1 is 0.70, and OSF2 is 0.985, available unit capacity = $50 \times 0.7 \times 0.985$, or 34.475 mb per stream days during the month.

• Product grades to be made during the month and their quantities. This is based on the expected shipment of products during the month. The schedule of ships likely to arrive at the refinery marine terminal and the product to be loaded on them is known several weeks ahead of their actual arrival. Keeping in view the product inventory likely to be available in refinery tanks, the production rates of all fixed product grades are worked out to meet the expected shipments. As the crude rate is already fixed, any blending stocks left after blending fixed grades is blended into balancing-grade products for spot sale by the refinery.

- *Product prices for all balancing-grade products.* The LP model optimize the production of balancing-grade products based on their prices. Prices are entered only for balancing-grade products whose production is not fixed. The LP optimizes the production of balancing-grade products based on their prices and maximizes refinery profit at the same time.
- Updated specifications for all product to be made. Although the LP model has built-in data on all product grades the refinery usually produces, updating may be necessary if the specifications for a product grade to be made are different.
- Updated blend map. Every LP model has a blend map that specifies which blend streams are to be allowed in blending a product grade. For example, if a refinery has a surplus heavy vacuum gas oil (HVGO) after meeting the requirements of conversion units, the model would dump all surplus HVGO in fuel oil. Disallowing HVGO in fuel oil in the blending map forces the LP to produce HVGO as an export stream.
- Buildup or drawdown of intermediate and process stocks from inventory. Inventories of all process stocks are closely monitored and regulated. Drawdown of intermediate or process stocks is done to ensure that processing units run to their full capacity or to meet given product demand. Buildup of stocks is sometimes done to ensure adequate stock ahead of a large shipment. For example, a refinery may build up reformate stock ahead of a large gasoline shipment or buildup HVGO ahead of a large export shipment of HVGO.

The format of an actual refinery DOP is shown in Table 15-1. The crude to be processed and product produced in the DOP become the refinery targets for the month (see Table 15-2). Also, feed rates and composition of all conversion units is kept close to DOP figures. If a product grade requires additives, such as military jet fuels, these are specified in the DOP and the refinery follows these directions while blending such products.

	bpcd	mb
CRUDE RUN		
ARAB LIGHT CRUDE	201000	6030
BAHRAIN CRUDE	42000	1260
CONDENSATE IMPORT	3600	108
TOTAL	246600	7398
INTERMEDIATE STOCK		
INVENTORY CHANGES		
LIGHT CAT NAPHTHA	-2000	-60
POLYMER GASOLINE	-1000	-30
CAT REFORMATE 90R	-600	-18
CAT REFORMATE 95R	-2000	-60
TOTAL	-5600	-168
PRODUCTION GRADES		
I-150 LPG	600	18
LIGHT NAPHTHA	3600	108
I-210 W.S.R.NAPHTHA	39483	1184
I-220 LIGHT NAPHTHA	29	1
I-390 GASOLINE 90R	2560	77
I-395 GAS 95 R	0	0
I-397L GAS 97 R	19951	599
I-398E GAS 98 R	1470	44
I-419 DUAL-PURPOSE KEROSENE	14000	420
JP-4	8000	240
I-440 KEROSENE JET A-1	24301	729
I-800 +6 POUR DIESEL	14000	420
I-876 – 3 POUR DIESEL	10000	300
I-876ZP - 18 POUR DIESEL	8000	240
I-885 – 3 POUR, 0.5S DIESEL	0	0
I-888 –3 POUR 1%S DIESEL	47098	1413
I-928 2.8 %S 180 cst FO	12000	360
I-961 3.5 %S, 180 cst FO	43513	1305
I-1138 ASPHALT	3553	107
TOTAL	252158	7565

Table 15-1Definitive Operating Plan of a Refinery

NOTES:

MONTH = APRIL 2000 NEGATIVE ENTRY IN THE TABLE INDICATES A DRAWDOWN. POSITIVE ENTRY INDICATES A BUILDUP OF STOCK.

(DOP continued)

UNITS	C	TOTAL AVAILABLE APACITY, bpcd	TOTAL UTILIZED bpcd	%UTILIZED bpcd
CRUDE UNITS 1-5		243000	243000	100.00%
VACUUM UNITS 1, 5, 6		95000	92108	96.96%
KEROSENE RERUN UNIT		15421	15421	100.00%
VISBREAKER		20000	19173	95.87%
ASPHALT CONVERTER		4800	2961	61.69%
KEROSENE TREATING U	NIT	45000	41987	93.30%
No. 1 HDU DIESEL HDS		20000	19998	99.99%
No. 2 HDU, HYDROCRAC	KER	50000	49005	98.01%
FCCU		39000	37833	97.01%
CAT REFORMER		15000	3625	24.17%
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL)	WHOLE S	STRAIGHT RUN) TO	SG = 0.6918	
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S	WHOLE STOCKS:	STRAIGHT RUN) TO	SG = 0.6918	
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S	WHOLE STOCKS:	STRAIGHT RUN) TO	SG = 0.6918 bpcd	mb
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO	WHOLE STOCKS: MOGA	STRAIGHT RUN) TO AS	SG = 0.6918 bpcd 0 863	mb 0 25 89
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO	WHOLE STOCKS: MOGA DIESH FUEL	STRAIGHT RUN) TO AS EL	SG = 0.6918 bpcd 0 863 1358	mb 0 25.89 40.74
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO	WHOLE STOCKS: MOG/ DIESI FUEL TOTA	STRAIGHT RUN) TO AS EL L	SG = 0.6918 bpcd 0 863 1358 2221	mb 0 25.89 40.74 66.63
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO	WHOLE S STOCKS: MOG/ DIESH FUEL TOTA DIESH	STRAIGHT RUN) TO AS EL EL	SG = 0.6918 bpcd 0 863 1358 2221 2351	mb 0 25.89 40.74 66.63 70.53
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO	WHOLE S STOCKS: MOGA DIESE FUEL TOTA DIESE FUEL	STRAIGHT RUN) TO AS EL L EL	SG = 0.6918 bpcd 0 863 1358 2221 2351 0	mb 0 25.89 40.74 66.63 70.53 0
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO	WHOLE S STOCKS: MOG/ DIESE FUEL TOTA DIESE FUEL HDU	STRAIGHT RUN) TO AS EL EL 1	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463	mb 0 25.89 40.74 66.63 70.53 0 193.89
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO LIMITING SPECS	WHOLE S STOCKS: MOG/ DIESE FUEL TOTA DIESE FUEL HDU	STRAIGHT RUN) TO AS EL L EL	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463 DIESEL	mb 0 25.89 40.74 66.63 70.53 0 193.89 DI/SULFUR
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO LIMITING SPECS	WHOLE S STOCKS: MOG/ DIESE FUEL TOTA DIESE FUEL HDU	STRAIGHT RUN) TO AS EL L EL	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463 DIESEL FUEL	mb 0 25.89 40.74 66.63 70.53 0 193.89 DI/SULFUR VISCOSITY
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO LIMITING SPECS FCCU FEED COMPOSITION	WHOLE S STOCKS: MOG/ DIESE FUEL TOTA DIESE FUEL HDU	STRAIGHT RUN) TO AS EL L EL 1	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463 DIESEL FUEL	mb 0 25.89 40.74 66.63 70.53 0 193.89 DI/SULFUR VISCOSITY
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO LIMITING SPECS FCCU FEED COMPOSITION	WHOLE S STOCKS: MOGA DIESE FUEL TOTA DIESE FUEL HDU MEDI	STRAIGHT RUN) TO AS EL L EL 1 UM/HEAVY ISOMAT	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463 DIESEL FUEL TE	mb 0 25.89 40.74 66.63 70.53 0 193.89 DI/SULFUR VISCOSITY 911%
NOTES: THE MODEL BLENDS WSR (DISPOSITION OF CRITICAL S HEAVY CAT NAPTHA TO KEROSENE TO LCGO TO LIMITING SPECS FCCU FEED COMPOSITION	WHOLE S STOCKS: MOG/ DIESE FUEL TOTA DIESE FUEL HDU MEDI FRESI VACI	STRAIGHT RUN) TO AS EL L L UM/HEAVY ISOMAT H FEED (HVGO) IUM RESID	SG = 0.6918 bpcd 0 863 1358 2221 2351 0 6463 DIESEL FUEL YE	mb 0 25.89 40.74 66.63 70.53 0 193.89 DI/SULFUR VISCOSITY 91% 9% 0%

Table 15-2Unit Capacity Utilization

The refinery prepares its own estimates of production rates, based on a refinery spreadsheet model and revised every week on the basis of refinery operating conditions. At the end of the month, the total crude processed should be close to that stipulated in the DOP. The product produced would, of course, be different because of the following:

- Blending of products in the refinery is done to meet specific shipments and not to maximize profit, as in the LP.
- Production rates of blend stocks can be different from that in the LP due to unscheduled shutdown of a processing unit, or yields and properties may be different due to a change in the operating conditions of a processing unit.

DOPS IN JOINT-OWNERSHIP REFINERIES

In joint-ownership refineries, the crude distillation unit (CDU) and downstream processing unit capacities are split between the two participants in the ratio of their equity in the refinery. Thus, the refinery is divided into two "virtual" refineries. Each participant is free to utilize its share of the refinery as it wishes.

In joint-ownership refineries, each participant prepares a DOP for its share of refinery capacity, stating the crude to be processed during the month and product to be produced. The DOP format is identical to that for single-ownership refineries.

To ensure that the participant DOPs are on a common basis, a reference LP model of the refinery is prepared by the refinery, reflecting the total CDU and process unit capacities likely to be available to the participants during the month, taking into account the refinery's shutdown schedule. Process yields and utilities, catalyst, and chemical consumption for all units; product qualities of all streams; and product specifications are updated, if required. The driving force behind the LP is product price for the agreed-on balancing grades, which are usually the mean of Platt published price (MOP) for each product prevailing during the previous month.

Two LP models are prepared from the reference refinery model by incorporating the unit capacity available to each participant as though these were independent refineries. Each participant updates its refinery model for preparation of its DOP by incorporating the following data:

- 1. The anticipated crude run during the month and any process stock drawn down or built up to meet its product slate.
- 2. The product grades and quantities it wishes to make during the month.
- 3. The maximum and minimum unit capacity of each processing unit available during the month, taking into account unit shutdowns, if any.

The LP model is run and the results of the LP feasible and optimum run are incorporated in the DOP.

REFINERY DOP

The refinery combines the two DOPs to make a refinery DOP before the start of the month. Examples of participant DOPs and combined refinery DOP is shown in Tables 15-3 to 15-8. The combined DOP becomes the

	bpcd	mb	%
FEED STOCKS			
ARABIAN LIGHT CRUDE	161000	4,830.0	
BAHRAIN CRUDE	42000	1,260.0	
TOTAL CRUDE	203000	6,090.0	
INTERMEDIATE STOCK INVENTORY CHANGES			
LIGHT CAT NAPHTHA	-2000		
POLYMER GASOLINE	-1000		
REFORMATE 95R	-2000		
REFORMATE 90R	-600		
TOTAL REFINERY FEED	208600	6,258.0	
FINISHED PRODUCTS			
I-150 LPG	600	18.0	0.29
I-201 LSR	0	0.0	0.00
I-210 WSR	31845	955.4	15.26
I-220 LSR	0	0.0	0.00
I-390 GASOLINE	2560	76.8	1.23
I-395 GASOLINE	0	0.0	0.00
I-397L GASOLINE	17242	517.3	8.26
I-398E GASOLINE	1470	44.1	0.70
I-419 DUAL KEROSENE	14000	420.0	6.71
I-434 JP-4	8000	240.0	3.83
I-440 JET A-1	17401	522.0	8.34
I-800 1.0%S +6 POUR	14000	420.0	6.71
I-876 1.0%S -6 POUR	10000	300.0	4.79
I-876ZP 0.4%S -18 POUR	8000	240.0	3.83
I-885 .5%S	0	0.0	0.00
I-888 1.0%S -3 POUR	33348	1000.4	15.99
I-928 2.8%S 180 CST	12000	360.0	5.75
I-961 3.5%S 180 CST	36153	1084.6	17.33
I-1138 BULK ASPHALT	2000	60.0	0.96
TOTAL PRODUCTS	208619	6258.6	100.00
LIQUID RECOVERY	100.01%		

Table 15-3DOP of Participant AOC

(DOP of Participant AOC continued) Table 15-4 Unit Capacity Utilization of Participant AOC

UNITS	AVAILABLE, bpcd	UTILIZED, bpcd	UTILIZED, mb	UTILIZED, %
CRUDE UNITS	203000	203000	6,090.0	100.0%
VACUUM UNITS	82086	76408	2,292.2	93.1%
NO.6 KEROSENE RERUN	23809	10521	315.6	44.2%
VISBREAKER	15873	15873	476.2	100.0%
ASPHALT CONVERTER	3968	1265	38.0	31.9%
KEROSENE TREATING	35087	35087	1,052.6	100.0%
HDU NO. 1	16708	16708	501.2	100.0%
HDU NO. 2	40935	40935	1,228.1	100.0%
FCCU	31603	31603	948.1	100.0%
CAT REFORMER	14285	2984	89.5	20.9%
NOTES:				
THE MODEL BLENDS WSR	TO SG 0.6917			
DISPOSITION OF CRITICAL	STOCKS:			
			bpcd	mb
HEAVY CAT NAPHTHA	MOGA	AS	0	0.0
	DIESH	EL	793	23.8
	FUEL		1206	36.2
			1999	60.0
KEROSINE TO	DIESE	EL	1981	59.4
	FUEL		0	0.0

157.7

	FUEL	0
LCGO TO	1HDU	5255
LIMITING SPECS	DIESEL	DI/SULFUR
	FUEL	VISCOSITY
FCCU FEED COMPOSITION		
MEDIUM/HEAVY ISOMATE		92.35%
FRESH FEED (HVGO)		7.65%
4 A VACUUM RESID		0.00%
		$\overline{100.00\%}$

operating plan of the refinery, and the Joint Operating Committee (JOC) tries to run the refinery as close as possible to that plan. In case of any unscheduled shutdown of a major process unit or other emergency, like a major storage tank out of service or problem at marine or shipping terminal, the JOC can ask the participants to resubmit their DOPs after taking into consideration the latest situation.

In joint-ownership refineries, participants DOPs, apart from serving as a refinery operating plan, are used as the basis of product allocation, or establishing the ownership of stocks. The mechanism of product allocation is explained later on in the book. The concepts of fixed- and balancing-grade products, used both in the LP models for DOP and product allocation, is explained here. Fixed-grade product equivalencies are used later in the product allocation program.

	bpcd	mb	%
FEED STOCKS			
ARABIAN LIGHT CRUDE	40000	1,200.0	
BAHRAIN CRUDE	0	0.0	
CONDENSATE IMPORT	3600	108.0	
TOTAL CRUDES	43600	1,308.0	
INITIAL STOCK INVENTORY CHANGES STOCK			
LIGHT CAT NAPHTHA	0		
POLYMER GASOLINE	0		
REFORMATE 95R	0		
REFORMATE 90R	0		
TOTAL REFINERY FEED	43600	1,308.0	
FINISHED PRODUCTS			
I-150 LPG	0	0.0	0.00
I-201 LSR	3600	108.0	8.27
I-210 WSR	7638	229.1	17.54
I-220 LSR	29	0.9	0.07
I-390 GASOLINE	0	0.0	0.00
I-395 GASOLINE	0	0.0	0.00
I-397L GASOLINE	2709	81.3	6.22
I-398E GASOLINE	0	0.0	0.00
I-419 DUAL KEROSENE	0	0.0	0.00
I-434 JP-4	0	0.0	0.00
I-440 JET A-1	6900	207.0	15.85
I-800 1.0%S +6 POUR	0	0.0	0.00
I-876 1.0%S -6 POUR	0	0.0	0.00
I-876ZP 0.4%S -18 POUR	0	0.0	0.00
I-885 .5% S	0	0.0	0.00
I-888 1.0%S -3 POUR	13750	412.5	31.58
I-928 2.8%S 180 CST	0	0.0	0.00
I-961 3.5%S 180 CST	7360	220.8	16.90
I-1138 BULK ASPHALT	1553	46.6	3.57
TOTAL PRODUCTS	43539	1306.17	100.00
LIQUID RECOVERY	99.86%		

Table 15-5 DOP of Participant BOC

Unit Capacity Utilization of Participant BOC					
UNITS	AVAILABLE, bpcd	UTILIZED, bpcd	UTILIZED, mb	UTILIZED, %	
CRUDE UNITS 1-5	40000	40000	1,200.0	100.0%	
VACUUM UNITS 1, 5, 6	15700	15700	471.0	100.0%	
KEROSENE RERUN NO. 6	4900	4900	147.0	100.0%	
VISBREAKER	3300	3300	99.0	100.0%	
ASPHALT CONVERTER	4800	1696	50.9	35.3%	
KEROSENE TREATING	6900	6900	207.0	100.0%	
HDU NO. 1	3290	3290	98.7	100.0%	
HDU NO. 2	8070	8070	242.1	100.0%	
FCCU	6230	6230	186.9	100.0%	
CAT REFORMER	2800	641	19.2	22.9%	

(DOP of Participant BOC continued) Table 15-6 Unit Capacity Utilization of Participant BOC

NOTES:

DISPOSITION OF CRITICAL STOCKS:

		bpcd	mb
HEAVY CAT NAPHTHA TO	MOGAS	. 0	0.0
	DIESEL	70	2.1
	FUEL	152	4.6
		222	6.7
KEROSINE TO	DIESEL	370	11.1
	FUEL	0	0.0
LIGHT CYCLE GAS OIL TO	1HDU	1208	36.2
LIMITING SPECS	DIESEL	D.I.	
	FUEL	VISCOSITY	
FCCU FEED COMPOSITION		V/V	
MEDIUM/HEAVY ISOMATE		90.00%	
FRESH FEED (HVGO)		10.00%	
VACUUM RESID		0.00%	
		100.00%	

	AOC, bpcd	BOC, bpcd	TOTAL, bpcd	TOTAL, mb
PRODUCTION GRADE	118/10 *****			
I-150	600	0	600	18.0
I-201	0	3600	3600	108.0
I-210	31845	7638	39483	1184.5
I-220	0	29	29	0.9
I-390	2560	0	2560	76.8
I-395	0	0	0	0.0
I-397L	17242	2709	19951	598.5
I-398E	1470	0	1470	44.1
I-419	14000	0	14000	420.0
I-434	8000	0	8000	240.0
I-440	17401	6900	24301	729.0
I-800	14000	0	14000	420.0
I-876	10000	0	10000	300.0
I-876ZP	8000	0	8000	240.0
1-885	0	0	0	0.0
I-888	33348	13750	47098	1412.9
I-928	12000	0	12000	360.0
I-961	36153	7360	43513	1305.4
I-1138	2000	1553	3553	106.6
TOTAL	208619	43539	252158	7564.7
INTERMEDIATE				
STOCK CHANGES				
LCN	-2000	0	-2000	-60.0
CPOR	-1000	0	-1000	-30.0
CR90	-600	0	-600	-18.0
CR95	-2000	0	-2000	-60.0
TOTAL	-5600	0	-5600	-168.0

Table 15-7Combined DOP of Participants

NOTES:

NEGATIVE ENTRY IN THE TABLE INDICATES A DRAWDOWN. POSITIVE ENTRY INDICATES A BUILDUP OF STOCK.

CRUDE RUN	AOC bpcd	BOC bpcd	TOTAL bpcd
ARABIAN LIGHT	161000	40000	201000
BAHRAIN	42000	0	42000
CONDENSATE IMPORT	0	3600	3600
TOTAL	203000	43600	246600

UNITS	TOTAL AVAILABLE, bpcd	UTILIZED AOC, bpcd	UTILIZED BOC, bpcd	TOTAL UTILIZED, bpcd	UTILIZED, bpcd%
CRUDE UNITS 1-5	243000	203000	40000	243000	100.0
VACUUM UNITS 1, 5, 6	95000	76408	15700	92108	97.0
NO. 6 KEROSENE RERUN	15421	10521	4900	15421	100.0
VISBREAKER	20000	15873	3300	19173	95.9
ASPHALT CONVERTER	4800	1265	1696	2961	61.7
KEROSENE TREATING	45000	35087	6900	41987	93.3
HDU NO. 1	20000	16708	3290	19998	100.0
HDU NO. 2	50000	40935	8070	49005	98.0
FCCU	39000	31603	6230	37833	97.0
CAT REFORMER	15000	2984	641	3625	24.2
NOTES: THE MODEL BLEI	NDS WSR to S.C	G. = 0.6918			
Dist control of children	L DI CERS.		ь	pcd	mb
HEAVY CAT NAPTHA TO		MOGA	.s	0	0

Table 15-8Combined Unit Capacity Utilization

HEAVY CAT NAPTHA TO	MOGAS	0	0
	DIESEL	863	25.89
	FUEL	1358	40.74
	TOTAL	2221	66.63
KEROSENE TO	DIESEL	2351	70.53
	FUEL	0	0
LCGO TO	1HDU	6463	193.89
LIMITING SPECS		DIESEL	DI/SULFUR
		FUEL	VISCOSITY
FCCU FEED COMPOSITION			
MEDIUM/HEAVY ISOMATE			91%
FRESH FEED (HVGO)			9%
VACUUM RESID			0%
TOTAL			100%

EXAMPLE 15-1

A joint ownership refinery has processing unit capacities as follows. Participant AOC has a 60% share of the refinery and Participant BOC has a 40% share of the refinery. Estimate the maximum crude the two participants can process within their capacity rights. Crude distillation units = 200 mbpcd Catalytic reformer = 20 mbpcd FCCU = 40 mbpcd Distillate hydrocracker = 50 mbpcd

The processing unit capacities available to each participant for processing their feed stock follows next:

	REFINERY		
PROCESSING UNIT	CAPACITY	AOC, 60%	BOC, 40%
CRUDE DISTILLATION UNITS	200 mbpcd	120	80
CATALYTIC REFORMER	20 mbpcd	12	8
FCCU	40 mbpcd	24	16
DISTILLATE HYDROCRACKER	50 mbpcd	30	20

The maximum crude run of a participant is dictated by the crude unit capacity available to it. Therefore, the maximum crude run by participant company AOC is 120 mbpcd. Also, process unit capacities utilized for processing this crude must not exceed the capacities available to it.

FIXED- AND BALANCING-GRADE PRODUCTS

Refinery products grades may be divided into two categories: fixed grades and balancing grades. Fixed grades are those products produced to meet a definite export commitment. The volumes required and product specifications are known before beforehand (see Table 15-9), and these are blended first. The balance of blending components in a product group, after meeting fixed grades demand, is blended to a balancing-grade specification. Balancing-grade production cannot be fixed. It depends on the volumes and specifications of fixed grades as well as its own product specification.

One grade in every product group (naphtha, gasoline, kerosene, diesel, fuel oil, etc.) is nominated as the balancing grade. In participants' DOPs, the production of balancing grades is optimized based on their price.

For the operation of the joint refinery, each participant can have different product specifications for its fixed grades that give it the flexibility to produce products to suit its market requirements. It is essential, however, that both participants have common balancing-grade products.

GRADE	PRODUCT GROUP	KEY SPECIFICATIONS
I-150* I-151	LPG LPG	RVP 275 – 690 KPA RVP 485 MAX
I-201* I-220 I-222	LSR NAPHTHA LSR NAPHTHA LSR NAPHTHA	LSR, RVP 95 KPA MAX., SG MIN 0.654 LSR, RVP 95 KPA MAX., SG MIN 0.654-0.702 LSR, RVP 95 KPA MAX., SG MIN 0.654-0.702
I-206 I-210* I-211	NAPHTHA NAPHTHA NAPHTHA	WSR, RVP 80 KPA, SG 0.702 MAX. WSR, RVP 75 KPA, SG 0.69 – 0.735 MAX. WSR, RVP 75 KPA, SG 0.70 – 0.735 MAX.
I-213	NAPHTHA	WSR, RVP 65 KPA MAX.
I-253	GASOLINE	FCCU LIGHT NAPHTHA, RON 88 MIN, RVP 70 MAX.
I-387 I-390 I-393 I-395 I-397 *	GASOLINE GASOLINE GASOLINE GASOLINE GASOLINE	RON 87, RVP 75 MAX. RON 90, RVP 70 MAX. RON 93, RVP 75 MAX. RON 95, RVP 65 MAX. RON 97, RVP 85 MAX
I-400	KEROSENE	ILLUMINATING KERO, SMOKE 21, FLASH
I-411	KEROSENE	ILLUMINATING KERO, SMOKE 25, FLASH 35 MIN.
I-419 I-434 I-440*	KEROSENE KEROSENE KEROSENE	DPK, 38°C FLASH, -47°C FREEZE. JP-4, -58°C FREEZE, 25 VOL % AROMATICS. JET FUEL, 25 SMOKE, -47°C FREEZE
I-710	HVGO	HEAVY LUBE DISTILLATE, VISCOSITY 14 CST AT 100°C
I-711 I-725	HVGO HVGO	HVGO, VIS. 6–9 CST AT 100°C FCCU CHARGE STOCK, SULFUR MAX 3.0%
I-800 I-803	DIESEL DIESEL	DIESEL INDEX 45, POUR + 6°C CETANE INDEX 45, CLOUD POINT 3°C
I-808 I-875	DIESEL DIESEL	CETANE INDEX 50, CLOUD POINT 2°C CETANE INDEX 47, CLOUD POINT -4°C
I-876 I-876Z	DIESEL DIESEL DIESEI	CETANE INDEX 46, CLOUD POINT – 1°C CETANE INDEX 46, CLOUD POINT – 12°C CETANE INDEX 47, CLOUD POINT – 6°C
I-885 I-888*	DIESEL DIESEL	CETANE INDEX 50, POUR -3° C CETANE INDEX 50, POUR -3° C
I-890	MARINE DSL	CETANE INDEX 45, POUR -9°C

Table 15-9 Refinery Product Grades

NOTE:

AN ASTERISK (*) DENOTES BALANCING GRADE PRODUCTS.

Table 15-9 Continued

I-892	MARINE DSL	CETANE INDEX 43, POUR 3°C, 2% CON CARBON
I-893	MARINE DSL	CETANE INDEX 45, POUR -9°C, 0.08% CON CARBON
1-903	FUEL OIL	VISCOSITY 80 CST AT 50°C, 0.3% SULFUR
I-925	FUEL OIL	VISCOSITY 180 CST AT 50°C, 2.5% SULFUR
I-928	FUEL OIL	VISCOSITY 180 CST AT 50°C, 2.8% SULFUR
1-933	FUEL OIL	VISCOSITY 80 CST AT 50°C, 3.5% SULFUR
I-934	FUEL OIL	VISCOSITY 120 CST AT 50°C, 3.0% SULFUR
I-955	FUEL OIL	VISCOSITY 75 CST AT 50°C, 3.5% SULFUR
I-957	FUEL OIL	VISCOSITY 225 CST AT 50°C, 3.5% SULFUR
I-960	FUEL OIL	VISCOSITY 120 CST AT 50°C, 3.5% SULFUR
I-961*	FUEL OIL	VISCOSITY 180 CST AT 50°C, 3.5% SULFUR
I-962	FUEL OIL	VISCOSITY 280 CST AT 50°C, 3.5% SULFUR
I-963	FUEL OIL	VISCOSITY 180 CST AT 50°C, 3.8% SULFUR
I-964	FUEL OIL	VISCOSITY 140 CST AT 50°C, 3.5% SULFUR
I-965	FUEL OIL	VISCOSITY 280 CST AT 50°C, 3.5% SULFUR
I-966	FUEL OIL	VISCOSITY 280 CST AT 50°C, 4.0% SULFUR
I-967	FUEL OIL	VISCOSITY 180 CST AT 50°C, 3.5% SULFUR
I-971	FUEL OIL	VISCOSITY 380 CST AT 50°C, 4.0% SULFUR
I-975	FUEL OIL	VISCOSITY 530 CST AT 50°C, 3.5% SULFUR
I-1110B	ASPHALT	BULK ASPHALT, PENETRATION 180–220
I-1110D	ASPHALT	DRUMMED ASPHALT, PENETRATION 180-220
I-1129B	ASPHALT	BULK ASPHALT, PENETRATION 85–100
I-1129D	ASPHALT	DRUMMED ASPHALT, PENETRATION 85–100
I-1138B	ASPHALT	BULK ASPHALT, PENETRATION 60-70
I-1138D	ASPHALT	DRUMMED ASPHALT, PENETRATION 60–70
I-1149B	ASPHALT	BULK ASPHALT, PENETRATION 40–50
I-1149D	ASPHALT	DRUMMED ASPHALT, PENETRATION 40–50

GRADE/CODE

PROCESS STOCK

GASOLINE BASE STOCK TREATED LIGHT CAT NAPHTHA UNTREATED LIGHT CAT NAPHTHA LSR UNTREATED UNTREATED MEDIUM ST. RUN
NAPHTHA
CAT REFORMATE, 90 RON
CAT REFORMATE, 95 RON
CAT REFORMATE, 97 RON
SWEET MEDIUM CAT NAPHTHA
TREATED MSR NAPHTHA
RAW POLYMER GASOLINE
UNIFINER CHARGE
WHOLE CAT NAPHTHA

GRADE/CODE	PROCESS STOCK
PSKERO	SWEET KEROSENE DISTILLATE
PDSDSL	DESULFURISED DIESEL STOCK
PDSL	UNTREATED DIESEL STOCK
PLTISO	LIGHT DIESEL EX HYDROCRACKER
PMIDSL	MEDIUM/INTER DIESEL STOCK
PBFUEL	BURNER FUEL OIL
PCTISO	DESULFURISED HVGO EX MILD
	HYDROCRACKER
PCTTR	FUEL OIL CUTTER STOCK
PFCCF	FCCU CHARGE, HVGO
PFCCO	FCCU CHARGE, DESULFURISED HVGO
PFDISO	HVGO FEED TO HYDROCRACKER
PLANTS	PLANTS AND LINE CONTENT
PMEISO	MEDIUM ISOMATE CUTTER
PRESID	ATM RESID/VDU FEED
PSLOPD	SLOP DISTILLATE
PSLOPO	SLOP OIL

Table 15-9 Continued

EXAMPLE 15-2

We want to estimate the production of balancing grade fuel oil (I-961). The production of fuel oil blending components in a refinery and their properties and its fixed-grade production are as follows:

STREAM	VOL, mb	VBI*	SULFUR, wt%	SPECIFIC GRAVITY
VACUUM RESID	1112	706	4.28	1.0170
CUTTERS	581	140	2.40	0.9684
HEAVY CAT NAPHTHA	95	-250	0.40	0.8256
TOTAL	1788	471.2	3.46	0.9910

* VISCOSITY BLENDING INDEX

To estimate the production of balancing-grade fuel oil (I-961), the average properties of the fixed fuel oil grades is estimated, as shown next:

FIXED GRADES	REQUIREMENTS , mb	VBI	SULFUR, wt%
I-928	250	460	2.0
I-957	150	460	3.4
I-971	300	516	4.0
TOTAL	700	470	3.2

Out of 1788 mb of available fuel oil components, 700 mb go to blending fixed fuel oil grades. The remaining 1088 mb have a viscosity blending index of 472.

For disposal of this material, we have two options: to blend off this material to the specifications of balancing grade fuel oil or to keep this material in inventory as process stock for product blending later.

In option 1, this material must be blended to fuel oil balancing-grade (BG) specifications I-961 by adding finished diesel (I-888) to the remaining fuel oil pool to lower its viscosity blending index to the I-961 specs of 458.

	VOL,		SULFUR,
STREAM	mb	VBI	wt%
FIXED GRADE	700	469	3.2
REMAINING POOL	1088	472	3.4
ADD DIESEL	30	-30	0.97
TOTAL I-961 (BG)	1118	458	3.50

Process stocks have no product specifications to meet. The product quality depends on the process conditions of the refinery units from which they originate. These are treated as fixed-grade products, even though they are not blended products.

From among the various product specifications for a product pool, we consider for possible nomination to balancing grade only those that can be met by average pool properties. For example, consider fuel oil pool (vacuum resids, cutter stocks, and the like) from a refinery with following properties:

Sulfur	3.50%
Viscosity	400 cst
Con carbon	15.0%

A fuel oil balancing grade must have properties close to the pool properties. For example, if the fuel oil balancing grade has a viscosity of 100 cst, this product could be blended only by downgrading a large amount of diesel to the fuel oil pool to reduce the pool viscosity from 400 cst to 100 cst. Similarly, if a balancing-grade fuel oil had a sulfur content of 1.5% instead of 3.5%, the pool sulfur could be lowered only by inclusion of a large amount of diesel and a large economic penalty.

In the allocation program, balancing grades are required as reference grades, in terms of which all fixed grades and process stock equivalencies are expressed. All settlements between the participants for overlifting or underlifting is done by exchange of balancing-grade products, as these are produced by both participants.

In the final allocation LP models for each participant, production of balancing grades is optimized on the basis of their price after producing all the fixed stocks and inventory changes as per the actual productions and available unit capacities.

It is essential that both the allocation program and allocation LP models for both participants have identical balancing grades.

PRODUCT EQUIVALENCIES

The concept of a fixed-grade product equivalencies makes it possible to express any fixed grade product into its balancing grade equivalent, in term of its volume. Note that each participant in a joint-ownership refinery may produce different product fixed grades within a product group, but both participants produce same balancing grade within the group. The concept of product equivalencies is fundamental to the mechanism of valuation and exchange of fixed-grade products with different specifications. In a joint-ownership refinery, all outstanding claims between the two participants are settled by exchanging balancinggrade products. The concept of equivalency allows participants to produce and ship products with the different specifications required for its sale domain without causing any accounting problems.

A joint-ownership refinery produces a large number of product grades and process stocks for its operations. Table 15-10 shows the product grades produced by one such refinery. Both participants are free to produce any number of fixed grades in a group, but they must also produce the balancing grade of the group. Fixed-grade volumes are converted into balancing-grade volumes by means of product equivalency. As balancing

Table 15-10Fixed-Grade Product Equivalencies

PRODUCT	CLASS	GROUP	I-150	I-201	I-210	I-397	I-440	I-888	I-961
I-1110B	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1110D	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1129B	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1129D	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1138B	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1138D	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1149B	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-1149D	ASPHALT	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.7287	1.7287
I-150	LPG	150	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
I-151	LPG	150	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
I-201	LSR	201	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
I-210	WSR	210	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
I-211	WSR	210	0.0245	-0.3110	1.2865	0.0000	0.0000	0.0000	0.0000
I-213	WSR	210	-0.0400	-0.1680	1.2080	0.0000	0.0000	0.0000	0.0000
I-220	WSR	201	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
I-222	WSR	201	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
I-253	CAT NAPHTHA	397	-0.0078	0.1634	0.0000	0.8444	0.0000	0.0000	0.0000
I-387	GASOLINE	397	0.0054	0.6160	0.0000	0.3786	0.0000	0.0000	0.0000
1-390	GASOLINE	397	0.0068	0.4543	0.0000	0.5525	0.0000	0.0000	0.0000
I-393	GASOLINE	397	0.0103	0.2916	0.0000	0.6981	0.0000	0.0000	0.0000
1-395	GASOLINE	397	0.0119	0.1834	0.0000	0.8047	0.0000	0.0000	0.0000
I-397	GASOLINE	397	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
I-398	GASOLINE	397	-0.0003	0.0216	0.0000	0.9787	0.0000	0.0000	0.0000
I-400	KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
I-411	KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
I-419	KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
I-434	JP-4	210	-0.0350	0.0000	0.5230	0.0000	0.5120	0.0000	0.0000
I-440	KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
I-710	HVGO	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2500	0.7500
I-711	HVGO	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2500	0.7500
I-725	HVGO	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.3468	0.6532
I-800	DIESEL	888	0.0000	0.0000	0.0000	0.0000	-0.5681	1.5681	0.0000

PRODUCT	CLASS	GROUP	I-150	I-201	1-210	1-397	I-440	I-888	I-961
I-803	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.1478	0.8522	0.0000
I-808	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
I-875	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.1478	0.8522	0.0000
I-876	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.1478	0.8522	0.0000
I-876ZP	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.5768	0.4232	0.0000
I-884	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.2754	0.7246	0.0000
I-885	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
I-888	DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
I-892	BULK DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0000	0.7320	0.2680
I-893S	BULK DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0260	0.8800	0.0940
I-893W	BULK DIESEL	888	0.0000	0.0000	0.0000	0.0000	0.0000	0.9963	0.0037
I-903	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
I-925	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0015	0.9985
I-928	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0204	1.0204
I-933	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.1271	0.8729
I-934	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0501	0.9499
I-955	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.1392	0.8608
I-957	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2168	0.7832
I-960	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0542	0.9458
I-961	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
I-962	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0548	1.0548
I-964	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0360	0.9640
I-966	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0719	1.0719
I-971	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1042	1.1042
I-975	FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1454	1.1454

Table 15-10 Continued

PBFUEL	BURNER FUEL OIL	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
PCTISO	ISOMATE CUTTER	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.3360	0.6640
PCTTR	FCC CUTTER	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.6438	0.3562
PDSDSL	DSL EX 1HDU	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
PDSL	UNDESULF.DSL	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
PFCCF	HVGO	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2406	0.7594
PFCOO	H.ISOM	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2697	0.7303
PFDISO	HVGO FEED TO HCR.	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2406	0.7594
PGABS	GASOLINE B.S	397	-0.0914	0.5571	0.0000	0.5343	0.0000	0.0000	0.0000
PKERO	TKE/SOUR KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
PLANTS	PLANT & LINE CONT.	961	0.0103	0.1040	0.1105	0.1518	0.0886	0.1854	0.3494
PLCGAS	LIGHT CAT NAPTHA,	397	-0.0075	0.0327	0.0000	0.9748	0.0000	0.0000	0.0000
	TREATED								
PLLCN	LIGHT CAT NAPTHA,	397	-0.0075	0.0327	0.0000	0.9748	0.0000	0.0000	0.0000
	UNTR.								
PLTISO	LIGHT ISOMATE	888	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
PMEISO	MEDIUM ISOMATE	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.3360	0.6640
PMIDSL	4A M/I DSL	888	0.0000	0.0000	0.0000	0.0000	-0.4551	1.4551	0.0000
PMSR	THN/SOUR MSR	210	-0.1140	0.4690	1.5830	0.0000	0.0000	0.0000	0.0000
PPOLY	POLY GASOLINE	397	-0.0154	-0.1076	0.0000	1.1230	0.0000	0.0000	0.0000
PP90R	REFORMATE 90 R	397	-0.0227	-0.0263	0.0000	1.0490	0.0000	0.0000	0.0000
PP95R	REFORMATE 95 R	397	-0.0206	-0.1615	0.0000	1.1821	0.0000	0.0000	0.0000
PRESID	6VDU FEED	961	0.0000	0.0000	0.0000	0.0000	0.0000	0.2218	0.7782
PSKERO	SWEET KEROSENE	440	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
PSLOPD	SLOP DISTILLATE	961	0.0000	0.1000	0.1000	0.1400	0.1900	0.3700	0.1000
PSLOPO	SLOP OIL	961	0.0000	0.1000	0.1000	0.1400	0.1900	0.3700	0.1000
PSLOPT	SLOP	397	-0.0123	0.1414	0.0000	0.4936	0.0488	0.3285	0.0000
PSMCN	MCN	397	-0.1742	0.3624	0.0000	0.8118	0.0000	0.0000	0.0000
PSWMSR	SWEET MSR	210	-0.1140	0.4690	1.5830	0.0000	0.0000	0.0000	0.0000
PUFCHG	UNIFINER CHG.	210	-0.1140	-0.4690	1.5830	0.0000	0.0000	0.0000	0.0000
PWCN	NAPTHA FROM VISBREAKER	397	-0.1742	0.3624	0.0000	0.8118	0.0000	0.0000	0.0000

grades are produced by both participants, any overlifting by one participant is settled in terms of balancing grade products.

PRODUCT EQUIVALENCY DETERMINATION

To work out the product equivalency of a fixed grade in any group, the basis of product equivalencies must be identified:

Naphtha. Calculations are based on density and Reid vapor pressure (RVP). The density and RVP of a fixed grade naphtha, whose equivalency is to be determined, must match those of a hypothetical blend of two balancing-grade products (LPG and naphtha).

Gasoline. The RVP and RON of the fixed-grade gasoline are matched with those of a blend of a balancing-grade naphtha, a balancing grade gasoline, and balancing grade LPG.

Diesel. The fixed-grade diesel equivalencies are based on pour point, cetane index, or the sulfur content of the grade.

Vacuum gas oils. VGO is an important intermediate stock. Its product equivalency is determined on the basis of its viscosity, in terms of diesel and fuel oil balancing grades.

Fuel oils. The key properties are the viscosity, sulfur, and Conradson carbon specs, which must be matched.

Representative values of the balancing-grade properties are used to determine the fixed-grade product equivalencies (see Table 15-11).

Balanoing drade i ropentes								
GRADE	GROUP	SPECIFIC GRAVITY	RVP, psia	RON	POUR INDEX	VBI	SULFUR, wt%	CON. CARBON
I-150	LPG	0.5740	60.00	98.0				
I-201	LSR	0.6698	13.97	55.2				
I-210	WSR	0.7052	8.80					
I-397	GASOLINE	0.7279	10.29	97.2				
I-440	KEROSENE	0.7890	0		38.7		0.30	
I-888	DIESEL				250.0	-45	0.97	
I-961	FUEL OIL					463	3.35	13.4

Table 15-11Balancing-Grade Properties

EXAMPLE 15-3

Calculate the product equivalency of I-434 (JP-4), a military jet fuel, blended from kerosene, naphtha, and LPG. The I-434 target blending specs follow:

Density = 0.7527 gm/ccRVP = 2.50 psia

In the I-434 blend, let

I-150 = xI-210 = yI-440 = z

where x, y, and z are the volume fraction of blend components required to blend grade I-434.

Thus,

	x	у	Z	= 434
MATERIAL BALANCE	1	1	1	= 1
DENSITY	0.5740	0.7052	0.7890	= 0.7527
RVP	60	8.8	0	= 2.5

Solving for three equations for three unknowns gives the following result:

I-150 = -0.035I-210 = 0.512I-440 = 0.521

So, for accounting purposes, one barrel of JP-4 is equivalent to 0.521 bbl I-440 plus 0.512 bbl I-210 minus 0.033 bbl I-150. Therefore. the equivalency of JP-4 (I-434) is written as follows:

	I-150	I-210	I-440
I-434	-0.0350	0.5120	0.5210

EXAMPLE 15-4

Determine the equivalency of a diesel grade I-876Z blended from diesel and kerosene. The target blending specs of I-876Z are as follows:

Pour point = -0.4° F Sulfur = 0.4 wt%

I-876 ZP could be considered a blend of kerosene and diesel to match the pour point -0.4° F. The limiting specification is the I-876Z pour point. As sulfur is not limiting, this property is not considered.

GRADE	PRODUCT	VOLUME	POUR POINT, °F	POUR INDEX
I-440	KEROSENE	0.5768	-50.0	45.68
I-888	DIESEL	0.4232	26.60	388.70
I-876ZP	DIESEL	1.0000	-0.40	190.42

Hence, the equivalency of I-876Zp becomes

1 bbl I-876ZP = 0.5768 bbl kerosene + 0.4232 bbl diesel

EXAMPLE 15-5

Determine the equivalency of a marine diesel, grade I-892, blended from diesel and fuel oil. The target blending specs of I-892 are as follows:

Viscosity = 3.0 - 9.0 cst Sulfur = 1.6 wt% Con carbon = 2.0 wt%

Marine diesel grade I-892 could be considered a blend of diesel and fuel oil to achieve a Con carbon content of 2.0 wt%, as follows:

		CON CARBON,				
GRADE	PRODUCT	VOLUME	wt%	VBI		
I-888	DIESEL	0.8582	0	-45		
I-961	FUEL OIL	0.1418	13.4	458		
I-892	MARINE DIESEL	1.0000	1.90	26.3		

We see that the viscosity index of the blend is 26.3, which corresponds to a viscosity of 4.1 cst, a value that falls within the specification range. Therefore, the equivalency of I-892 becomes

1 bbl I-892 = 0.8582 bbl I-888 + 0.14218 bbl I-961

EXAMPLE 15-6

Determine the product equivalency of fuel oil grade I-971 (380 cst viscosity, 4% sulfur) in terms of balancing grades.

I-971 could be considered a hypothetical blend of fuel oil I-961 and diesel I-888. The viscosity of I-971 could be achieved by removing some diesel from the fuel oil grade, as follows:

GRADE	PRODUCT	VOLUME	VBI	SULFUR, wt%
I-888	DIESEL	-0.1044	-45	0.97
I-961	FUEL OIL	1.1044	458	3.35
I-971	FUEL OIL	1.0000	511	3.76

Hence, the equivalency of I-971 becomes

1 bbl I-971 = -0.1044 bbl I-888 + 1.1044 bbl I-961

EXAMPLE 15-7

Determine the equivalency of asphalt, I-1138 (viscosity blending index 814), in terms of balancing grade products.

I-1138 (asphalt) could be considered a hypothetical blend of fuel oil and diesel. The viscosity of I-1138 could be achieved by removing some diesel from the fuel oil grade, as follows:

GRADE	PRODUCT	VOLUME	VBI	SULFUR, wt%
I-888	DIESEL	-0.7287	-45	0.97
I-961	FUEL OIL	1.7287	458	3.35
I-1138	FUEL OIL	1.0000	825	5.34

Hence the equivalency of I-1138 becomes

1 bbl I- 1138 = -0.7287 bbl I- 888 + 1.7287 bbl I- 961

CRUDE OIL EQUIVALENCY

Crude oil equivalency is determined for a joint ownership refinery by conducting a series of test runs on the crude distillation unit by gradually increasing CDU feed from its nominal design capacity to the hydraulic limits of the crude distillation unit. The incremental crude yields are recorded and used to convert the incremental crude run to equivalent barrels of balancing-grade products (see Table 15-12). Crude oil equivalency is required for preliminary allocation and have virtually no effect on final allocation.

Incremental Yield of Balancing Grade from Crude						
CRUDE RUN, mbpcd	I-201	I-210	I-440	I-888	I-961	LOSS
200	0.0010	0.1830	0.1000	0.3270	0.3740	0.0170
260	-0.0100	0.1800	0.1000	0.3100	0.4030	0.0170
270	-0.0150	0.2090	0.1000	0.2760	0.4110	0.0190
280	-0.0290	0.2360	0.1000	0.2620	0.4150	0.0160
290	-0.0400	0.2350	0.1000	0.1150	0.5740	0.0160

Table 15 10

EQUIVALENCY OF SLOP

Slop is the off-specification product produced by various processing units during start-up, shutdown, or emergency situations. This material is of variable composition and reprocessed either in the CDU or in product blending. The equivalency of the slop is determined from its ASTM distillation to determine the potential volumes of LPG, naphtha, kerosene, diesel, and fuel oil content likely to be obtained reprocessing it in a crude distillation unit. As the slop composition changes with time, the analysis is frequently updated for its use in determining the product equivalency. A typical slop equivalency is as follows:

1 bbl slop = 0.0 bbl I-150 + 0.10 bbl I-201 + 0.1 bbl I-210 + 0.14 bbl I-397 + 0.19 bbl I-440 + 0.37 bbl I-888 + 0.10 bbl I-61

As product equivalencies are defined in terms of balancing-grade products, if either the balancing grades chosen or their properties undergoes a change, the equivalencies of fixed grades also change. Product equivalencies are not unique. These are refinery specific. It is sometimes possible to define a fixed-grade equivalency in more than one way. The equivalency adopted must be acceptable to both participants. For product allocation, the equivalency of every fixed grade and process stock, including slop, must be determined.